Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Public transport of the future

27.04.2004


Public transport systems of the future will feature high-tech vehicles supported, behind the scenes, by revolutionary control and scheduling systems that will make timetables redundant say CSIRO scientists.


The Austrans rapid transit system
Credit: CSIRO



CSIRO has developed software that simulates the movement of passengers and vehicles around track-based public transport networks that are designed to carry large numbers of people.

The software, called RTSim (Rapid Transit Simulator), lets researchers study the effects of changing design and operation parameters of this type of public transport system.


"We can study the effect of changing characteristics such as platform length, track alignment and the average speed of the vehicles. We can also simulate passenger flow to understand how the system would respond to different demands," says CSIRO mathematician Dr Phil Kilby. "This shows us how to maximise passenger throughput to get the most out of the system."

"Understanding the factors that affect passenger flow is important for basic design of public transport systems. Even something as simple as how tickets are purchased can affect how many passengers a system can carry," he says.

RTSim demonstrates that public transport can be demand-responsive, with vehicles responding to passenger demand rather than running to timetables. In such a system, passengers would be served not in order of arrival at the station but in a way that optimises each journey, minimising the number of stops and finding the shortest possible route for each traveller in the network.

BASim, based on RTSim, is being used by Bishop Austrans to model potential installations of their Austrans rapid transit system.

Austrans is an ultra light rail automated people mover system based on individual lightweight passenger car size vehicles. The standard vehicle seats nine passengers in air-conditioned comfort. The vehicles can be scheduled like a bus or operate on demand like an elevator.

"BASim has been an essential tool for us to evaluate and model the performance of the Austrans system," says Managing Director of Bishop Austrans, Laurie Bishop. "We have been able to test different scenarios and layouts to optimise the most efficient and minimum cost infrastructure solutions. BASim has allowed us in Austrans to do research into different system configurations and to validate real world applications."

Through its intrinsic design Austrans has the following key characteristics:
  • Outstanding value for money with low cost of installation and operation compared to other motorised modes of transport that in typical urban applications requires no operating subsidies.

  • User friendly with ease of an elevator, and convenience and comfort of a car.

  • Environmentally and greenhouse friendly compared with other motorised transport modes.

  • Ease of routing and installation flexibility through its small vehicle mass and footprint, tight turning and steep grade climbing abilities.

  • Adaptability of its operations and capacity to meet demand and ability to develop and adapt networks over time.

  • Safe and reliable through extensive testing and fail-safe design and controls.

CSIRO researchers have also applied the mathematics behind RTSim to simulate a variety of other supply and demand situations, such as scheduling containers for transport by train and truck, and running auto-pickers at warehouses.

The Austrans test track and program was launched today by former Deputy Prime Minister Mr Tim Fischer.

Bill Stephens | CSIRO
Further information:
http://www.csiro.au/index.asp?type=mediaRelease&id=Praustrans
http://www.austrans.com

More articles from Transportation and Logistics:

nachricht A helping (Sens)Hand
11.04.2018 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Study sets new distance record for medical drone transport
13.09.2017 | Johns Hopkins Medicine

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Getting electrons to move in a semiconductor

25.04.2018 | Physics and Astronomy

Reconstructing what makes us tick

25.04.2018 | Physics and Astronomy

Cheap 3-D printer can produce self-folding materials

25.04.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>