Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Airplane wings that change shape like a bird’s have scales like a fish

21.04.2004


To maximize a plane’s efficiency over a broader range of flight speeds, Penn State engineers have developed a concept for morphing airplane wings that change shape like a bird’s and are covered with a segmented outer skin like the scales of a fish.


Morphing HECS wing: showing the unmorphed and morphiged configurations. The wing tips are bent downwards to provide yaw control.(Courtsey: NASA Langley)



Dr. George Lesieutre, professor of aerospace engineering who leads the project, says, "Airplanes today are a design compromise. They have a fixed-wing structure that is not ideal for every part of a typical flight. Being able to change the shape of the wings to reduce drag and power, which vary with flight speed, could optimize fuel consumption so that commercial planes could fly more efficiently."

Morphing wings can also be useful for military defense and homeland security when applied to unmanned surveillance planes that need to fly quickly to a distant point, loiter at slow speed for a period of time and then return, Lesieutre explains. Flying efficiently at high speed requires small, perhaps, swept wings. Flying at slow speed for long periods requires long narrow wings. The morphing wings designed by the Penn State team can change both wing area and cross section shape to accommodate both slow and fast flight requirements.


Lesieutre and the wing design team will detail their concept in a paper, "Tendon Actuated Compliant Cellular Truss For Morphing Aircraft Structures," on Tuesday, April 20, at the 45th AIAA/ASME/ASCE/AHA/ASC Structures, Structural Dynamics and Materials Conference in Palm Springs, Calif. The authors are Lesieutre; Dr. Mary Frecker, associate professor of mechanical engineering; Deepak Ramrakhyani, doctoral candidate in aerospace engineering; and Smita Bharti, doctoral candidate in mechanical engineering.

The essential features of the Penn State concept are a small-scale, efficient compliant cellular truss structure, highly distributed tendon actuation and a segmented skin. The cellular truss structure is the skeleton of the wing. The skeleton is formed of repeating diamond-shaped units made from straight metal members connected at the angles with bendable or "compliant" shape memory alloys. Tendons in each unit, like the ropes that shape a tent, can pull the units into new configurations that will spring back, thanks to the shape memory alloys, when the tendon tension is released.

Since the underlying structure can undergo radical shape change, the overlaying skin of the wing must be able to change with it. Lesieutre says a concept that he thinks holds great promise is a segmented skin composed of overlapping plates, like the scales of a fish. He notes that conveyers on the baggage carousel in airports are composed of a similar pattern of plates.

So far, the design team has built a tabletop model of the compliant cellular truss structure and a computer graphic model of the wing structure.


The project is supported by grants from NASA and the Defense Advanced Research Projects Agency (DARPA).

Barbara Hale | Penn State
Further information:
http://www.psu.edu/

More articles from Transportation and Logistics:

nachricht From parking garage to smart multi-purpose garage
19.07.2017 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

nachricht Efficient and intelligent: Drones get to grips with planning the delivery of goods
12.07.2017 | Alpen-Adria-Universität Klagenfurt

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>