Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Counterfeiting And Piracy: EU Research Helps Tackle The Problem


How can you be sure your watch is not a fake? How can you avoid a cargo container’s shipment changing, or disappearing, between departure and the arrival?

The Commission’s Joint Research Centre (JRC) has developed technical devices that support the fight against falsification and illegal trafficking. Using sophisticated technologies, originally devised for nuclear safeguards, the Commission has invented and tested prototypes and applications for the identification of watches and for the sealing of cargo containers. These include radio transponders embedded in watches, ultrasonic identification of particular markings in watches, and electronic seals of cargo shipments using multiple radio transponders.

Counterfeiting, piracy and illegal trafficking affect between 5% and 7% of world trade. The forgery business accounts for a €450 billion turnover per year worldwide, 60% of which occurs in EU countries. With a 5% share, forged watches represent one of the most affected sectors.

“This is an example of how science can help fight against counterfeiting and piracy” says European Research Commissioner Busquin. “They represent a real scourge on a global level and affect mostly EU business, the prime victim of these illegal practices. We cannot be 100% sure the expensive watch we just bought is the original brand. And how can we check what’s going on in the ship or plane carrying our company’s good across the world? Public authorities and law enforcement agencies are of course at the forefront in this fight. But the innovative technologies developed by the Commission help provide for a solution to this struggle against piracy crime.”

What’s on your wrist?

EU scientists propose two different patented technologies, for confirming that watches are genuine:

• The use of passive transponders, with information stored on a microchip included in a passive radio frequency transponder. The transponder, capable of transmitting the signal through metal up to 0.5 mm thick, is embedded inside the back cover of the watch. This transponder’s signal can be picked up from the outside thanks to a specific antenna, connected to a database (available on-line) which matches the transponder identity to the watch number. The date of sale and owner’s name can also be stored in the transponder if required.

• Ultrasonic techniques, to be used in mechanical watches not containing electronic parts. Small holes are drilled on the back of the upper watch crown. An ultrasonic reader is capable of correlating the number and position of the holes to the number of the watch through an on-line database. This method does not require any electronic devices to be placed within the watch.

How can you secure shipments?

Container traffic represents approximately 90% of all cargo shipments, amounting to around 250 million moves annually. Antifraud and security are major concerns. Proper sealing of containers has therefore become of high importance. Conventional sealing methods cannot guarantee container integrity and detect intrusion, nor can they provide information on what is happening in the cargo and to goods stored in it.

Break-in proof seal

The Commission has developed an inexpensive sealing clamp, based on multi-transponder technology. This innovative seal displays excellent mechanical strength and a unique system of identification. It confirms its correct installation, detects any illegal opening and, if required, stores information within a permanent memory located inside the seal.

All the readings/writings can be done automatically through an antenna and stored in a database, available on line, and can give real-time information about correct installation, integrity of the seal, and readings done at each checkpoint. This low-cost product has a promising potential market for sealing and identification of commercial containers to detect illegal openings and to follow the course of shipment up until delivery. It is protected by patent pending: 2694 PP Brevet 13103 filed 27/11/2002.

Check your cargo from your palmtop

All the identification and sealing system information is organised and stored inside a demo database (TDBS), a network-based data management application. TDBS’s purpose is to store seal verification data and to make them available in real time across any auditing network.

Once the data has been uploaded, it becomes instantly accessible on the net. TDBS is a client-server system where most of the technical load is placed on the server side, to ensure it is user-friendly for the client, regardless of his computer power. It is therefore possible for clients to use handheld devices (such as palmtops or cellular phones via a WAP, or wireless application protocol interface) in order to access TDBS without any limitation in quality, speed or number of offered features.

Othe EU initiatives

Other EU initiatives to tackle counterfeiting and piracy include the new regulation on seizure of counterfeit goods by customs at ports, airports and external frontiers (see IP/03/1059) and the proposed Directive on enforcement of intellectual property rights (see IP/03/144 and MEMO/03/20).

Berta Duane | European Commission
Further information:

More articles from Transportation and Logistics:

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

nachricht Discovering electric mobility in a playful way
18.08.2016 | Fraunhofer-Institut für Arbeitswirtschaft und Organisation IAO

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>