Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counterfeiting And Piracy: EU Research Helps Tackle The Problem

20.11.2003


How can you be sure your watch is not a fake? How can you avoid a cargo container’s shipment changing, or disappearing, between departure and the arrival?



The Commission’s Joint Research Centre (JRC) has developed technical devices that support the fight against falsification and illegal trafficking. Using sophisticated technologies, originally devised for nuclear safeguards, the Commission has invented and tested prototypes and applications for the identification of watches and for the sealing of cargo containers. These include radio transponders embedded in watches, ultrasonic identification of particular markings in watches, and electronic seals of cargo shipments using multiple radio transponders.

Counterfeiting, piracy and illegal trafficking affect between 5% and 7% of world trade. The forgery business accounts for a €450 billion turnover per year worldwide, 60% of which occurs in EU countries. With a 5% share, forged watches represent one of the most affected sectors.


“This is an example of how science can help fight against counterfeiting and piracy” says European Research Commissioner Busquin. “They represent a real scourge on a global level and affect mostly EU business, the prime victim of these illegal practices. We cannot be 100% sure the expensive watch we just bought is the original brand. And how can we check what’s going on in the ship or plane carrying our company’s good across the world? Public authorities and law enforcement agencies are of course at the forefront in this fight. But the innovative technologies developed by the Commission help provide for a solution to this struggle against piracy crime.”

What’s on your wrist?

EU scientists propose two different patented technologies, for confirming that watches are genuine:

• The use of passive transponders, with information stored on a microchip included in a passive radio frequency transponder. The transponder, capable of transmitting the signal through metal up to 0.5 mm thick, is embedded inside the back cover of the watch. This transponder’s signal can be picked up from the outside thanks to a specific antenna, connected to a database (available on-line) which matches the transponder identity to the watch number. The date of sale and owner’s name can also be stored in the transponder if required.

• Ultrasonic techniques, to be used in mechanical watches not containing electronic parts. Small holes are drilled on the back of the upper watch crown. An ultrasonic reader is capable of correlating the number and position of the holes to the number of the watch through an on-line database. This method does not require any electronic devices to be placed within the watch.

How can you secure shipments?

Container traffic represents approximately 90% of all cargo shipments, amounting to around 250 million moves annually. Antifraud and security are major concerns. Proper sealing of containers has therefore become of high importance. Conventional sealing methods cannot guarantee container integrity and detect intrusion, nor can they provide information on what is happening in the cargo and to goods stored in it.

Break-in proof seal

The Commission has developed an inexpensive sealing clamp, based on multi-transponder technology. This innovative seal displays excellent mechanical strength and a unique system of identification. It confirms its correct installation, detects any illegal opening and, if required, stores information within a permanent memory located inside the seal.

All the readings/writings can be done automatically through an antenna and stored in a database, available on line, and can give real-time information about correct installation, integrity of the seal, and readings done at each checkpoint. This low-cost product has a promising potential market for sealing and identification of commercial containers to detect illegal openings and to follow the course of shipment up until delivery. It is protected by patent pending: 2694 PP Brevet 13103 filed 27/11/2002.

Check your cargo from your palmtop

All the identification and sealing system information is organised and stored inside a demo database (TDBS), a network-based data management application. TDBS’s purpose is to store seal verification data and to make them available in real time across any auditing network.

Once the data has been uploaded, it becomes instantly accessible on the net. TDBS is a client-server system where most of the technical load is placed on the server side, to ensure it is user-friendly for the client, regardless of his computer power. It is therefore possible for clients to use handheld devices (such as palmtops or cellular phones via a WAP, or wireless application protocol interface) in order to access TDBS without any limitation in quality, speed or number of offered features.

Othe EU initiatives

Other EU initiatives to tackle counterfeiting and piracy include the new regulation on seizure of counterfeit goods by customs at ports, airports and external frontiers (see IP/03/1059) and the proposed Directive on enforcement of intellectual property rights (see IP/03/144 and MEMO/03/20).

Berta Duane | European Commission
Further information:
http://silab.jrc.it
http://www.jrc.cec.eu.int/

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>