Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Counterfeiting And Piracy: EU Research Helps Tackle The Problem

20.11.2003


How can you be sure your watch is not a fake? How can you avoid a cargo container’s shipment changing, or disappearing, between departure and the arrival?



The Commission’s Joint Research Centre (JRC) has developed technical devices that support the fight against falsification and illegal trafficking. Using sophisticated technologies, originally devised for nuclear safeguards, the Commission has invented and tested prototypes and applications for the identification of watches and for the sealing of cargo containers. These include radio transponders embedded in watches, ultrasonic identification of particular markings in watches, and electronic seals of cargo shipments using multiple radio transponders.

Counterfeiting, piracy and illegal trafficking affect between 5% and 7% of world trade. The forgery business accounts for a €450 billion turnover per year worldwide, 60% of which occurs in EU countries. With a 5% share, forged watches represent one of the most affected sectors.


“This is an example of how science can help fight against counterfeiting and piracy” says European Research Commissioner Busquin. “They represent a real scourge on a global level and affect mostly EU business, the prime victim of these illegal practices. We cannot be 100% sure the expensive watch we just bought is the original brand. And how can we check what’s going on in the ship or plane carrying our company’s good across the world? Public authorities and law enforcement agencies are of course at the forefront in this fight. But the innovative technologies developed by the Commission help provide for a solution to this struggle against piracy crime.”

What’s on your wrist?

EU scientists propose two different patented technologies, for confirming that watches are genuine:

• The use of passive transponders, with information stored on a microchip included in a passive radio frequency transponder. The transponder, capable of transmitting the signal through metal up to 0.5 mm thick, is embedded inside the back cover of the watch. This transponder’s signal can be picked up from the outside thanks to a specific antenna, connected to a database (available on-line) which matches the transponder identity to the watch number. The date of sale and owner’s name can also be stored in the transponder if required.

• Ultrasonic techniques, to be used in mechanical watches not containing electronic parts. Small holes are drilled on the back of the upper watch crown. An ultrasonic reader is capable of correlating the number and position of the holes to the number of the watch through an on-line database. This method does not require any electronic devices to be placed within the watch.

How can you secure shipments?

Container traffic represents approximately 90% of all cargo shipments, amounting to around 250 million moves annually. Antifraud and security are major concerns. Proper sealing of containers has therefore become of high importance. Conventional sealing methods cannot guarantee container integrity and detect intrusion, nor can they provide information on what is happening in the cargo and to goods stored in it.

Break-in proof seal

The Commission has developed an inexpensive sealing clamp, based on multi-transponder technology. This innovative seal displays excellent mechanical strength and a unique system of identification. It confirms its correct installation, detects any illegal opening and, if required, stores information within a permanent memory located inside the seal.

All the readings/writings can be done automatically through an antenna and stored in a database, available on line, and can give real-time information about correct installation, integrity of the seal, and readings done at each checkpoint. This low-cost product has a promising potential market for sealing and identification of commercial containers to detect illegal openings and to follow the course of shipment up until delivery. It is protected by patent pending: 2694 PP Brevet 13103 filed 27/11/2002.

Check your cargo from your palmtop

All the identification and sealing system information is organised and stored inside a demo database (TDBS), a network-based data management application. TDBS’s purpose is to store seal verification data and to make them available in real time across any auditing network.

Once the data has been uploaded, it becomes instantly accessible on the net. TDBS is a client-server system where most of the technical load is placed on the server side, to ensure it is user-friendly for the client, regardless of his computer power. It is therefore possible for clients to use handheld devices (such as palmtops or cellular phones via a WAP, or wireless application protocol interface) in order to access TDBS without any limitation in quality, speed or number of offered features.

Othe EU initiatives

Other EU initiatives to tackle counterfeiting and piracy include the new regulation on seizure of counterfeit goods by customs at ports, airports and external frontiers (see IP/03/1059) and the proposed Directive on enforcement of intellectual property rights (see IP/03/144 and MEMO/03/20).

Berta Duane | European Commission
Further information:
http://silab.jrc.it
http://www.jrc.cec.eu.int/

More articles from Transportation and Logistics:

nachricht Laser rescue system for serious accidents
29.11.2016 | Laser Zentrum Hannover e.V.

nachricht Bremen University students reach the final at robotics competition with parcel delivery robot
19.10.2016 | BIBA - Bremer Institut für Produktion und Logistik

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>