Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Traffic jam mystery solved by mathematicians

20.12.2007
Mathematicians from the University of Exeter have solved the mystery of traffic jams by developing a model to show how major delays occur on our roads, with no apparent cause.

Many traffic jams leave drivers baffled as they finally reach the end of a tail-back to find no visible cause for their delay. Now, a team of mathematicians from the Universities of Exeter, Bristol and Budapest, have found the answer and published their findings in leading academic journal Proceedings of the Royal Society.

The team developed a mathematical model to show the impact of unexpected events such as a lorry pulling out of its lane on a dual carriageway. Their model revealed that slowing down below a critical speed when reacting to such an event, a driver would force the car behind to slow down further and the next car back to reduce its speed further still. The result of this is that several miles back, cars would finally grind to a halt, with drivers oblivious to the reason for their delay. The model predicts that this is a very typical scenario on a busy highway (above 15 vehicles per km). The jam moves backwards through the traffic creating a so-called ‘backward travelling wave’, which drivers may encounter many miles upstream, several minutes after it was triggered.

Dr Gábor Orosz of the University of Exeter said: “As many of us prepare to travel long distances to see family and friends over Christmas, we’re likely to experience the frustration of getting stuck in a traffic jam that seems to have no cause. Our model shows that overreaction of a single driver can have enormous impact on the rest of the traffic, leading to massive delays.”

Drivers and policy-makers have not previously known why jams like this occur, though many have put it down to the sheer volume of traffic. While this clearly plays a part in this new theory, the main issue is around the smoothness of traffic flow. According to the model, heavy traffic will not automatically lead to congestion but can be smooth-flowing. This model takes into account the time-delay in drivers’ reactions, which lead to drivers braking more heavily than would have been necessary had they identified and reacted to a problem ahead a second earlier.

Dr Orosz continued: “When you tap your brake, the traffic may come to a full stand-still several miles behind you. It really matters how hard you brake - a slight braking from a driver who has identified a problem early will allow the traffic flow to remain smooth. Heavier braking, usually caused by a driver reacting late to a problem, can affect traffic flow for many miles.”

The research team now plans to develop a model for cars equipped with new electronic devices, which could cut down on over-braking as a result of slow reactions.

Sarah Hoyle | EurekAlert!
Further information:
http://www.exeter.ac.uk

More articles from Transportation and Logistics:

nachricht Tool helps cities to plan electric bus routes, and calculate the benefits
09.01.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Realistic training for extreme flight conditions
28.12.2016 | Technical University of Munich (TUM)

All articles from Transportation and Logistics >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

German Federal Government Promotes Health Care Research

29.03.2017 | Awards Funding

Periodic ventilation keeps more pollen out than tilted-open windows

29.03.2017 | Health and Medicine

Researchers discover dust plays prominent role in nutrients of mountain forest ecoystems

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>