Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zoos exonerated in baby elephant deaths; Data support new branch of herpesvirus family

09.10.2014

Elephants are among the most intelligent non-humans, arguably on par with chimps, but both African and Asian elephants—separate species—are endangered.

In 1995, 16-month old Kumari, the first Asian elephant born at the National Zoo in Washington, DC, died of a then-mysterious illness. In 1999, Gary Hayward of Johns Hopkins University and collaborators published their results identifying a novel herpesvirus, EEHV1 as the cause of Kumari's sudden death.


Kumari, an Asian elephant at the National Zoo, died suddenly at 16 months of EEHV.

Credit: Jessie Cohen, Smithsonian's National Zoo

They now show that severe cases like this one are caused by viruses that normally infect the species, rather than by viruses that have jumped from African elephants, which was their original hypothesis. Hayward's latest research appears ahead of print in two concurrently published papers in the Journal of Virology.

At the time of Kumari's death, anti-zoo activists seized on the situation to call for abandoning all efforts to breed Asian elephants in zoos, as they claimed that zoos were spreading the deadly herpesvirus, says Hayward. Contrary to that, in the current research, "We showed that whereas some identical herpesvirus strains infected both healthy and diseased animals concurrently at particular facilities, the majority were different strains, and there has not been a single proven case of the same strain occurring at any two different facilities," says Hayward.

"Therefore, the viruses have not spread between zoos, and the sources of the viruses were most likely wild-born elephant herdmates. In fact, we also found the same disease in several Asian range countries, including in orphans and wild calves, and showed that the EEHV1 strains in India displayed the same genetic diversity as those in Western zoos."

The papers also provide substantial data to support the hypothesis that the EEHV collectively represent a new, fourth major branch of the herpesvirus family, the proposed deltaherpesvirus subfamily (Deltaherpesvirinae), says Philip Pellett of Wayne State University, Detroit, who wrote an invited Commentary which accompanied Hayward's papers. "Given that the three other branches were recognized over 30 years ago, establishment of a new subfamily would a big deal."

Pellett adds that "Further scientific significance arises from the discovery of 12 new herpesviruses and identification of some new wrinkles in our understanding of herpesvirus diversity and evolution."

In these studies, the investigators performed extensive DNA fingerprinting of the genetic signatures of all the known EEHV cases, as well as samples of EEHV virus that were obtained from wild Asian and African elephants, says Hayward. In the process, they identified seven different species of EEHVs and multiple different chimeric subtypes and strains of each.

"Because these viruses cannot be grown in cell culture, we had to develop sensitive and specific PCR techniques to be able to identify and compare the sequences of multiple segments of many different types of EEHV genomes directly from pathological blood and tissue DNA samples," says Hayward.

"Later, by also examining benign lung nodules from culled wild African elephants, we determined that EEHV2, EEHV3, EEHV6, and EEHV7 are natural endogenous viruses of African elephants, whereas EEHV1A, EEHV1B, EEHV4, and EEHV5 are apparently natural and nearly ubiquitous infections of Asian elephants that are occasionally shed in trunk washes and saliva of most healthy asymptomatic adult animals."

Hayward notes that only one example of a lethal cross-species infection with EEHV3 into an Asian elephant calf has been observed, and that the viruses causing disease normally do so only in their natural hosts.

Close monitoring of Asian elephant calves in zoos has so far enabled life-saving treatment for at least nine infected Asian calves, says Hayward, suggesting that such monitoring may ultimately enable determining why some animals become susceptible to severe disease after their primary EEHV1 infections, while most do not. "About 20% of all Asian elephant calves are susceptible to hemorrhagic disease, whereas symptomatic disease is extremely rare in African elephant calves under the same zoo conditions," says Hayward.

In another paper in the same issue of Journal of Virology, Hayward et al. demonstrate that the many highly diverged species and subtypes of EEHVs are ancient viruses that evolved separately from all other known subfamilies of mammalian herpesviruses within the ancestor of modern elephants, beginning about 100 million years ago.

Philip Pellett, of Wayne State University School of Medicine, Detroit, praises both of Hayward's studies in this issue of the Journal of Virology: "The information gained in the new EEHV papers will be important for developing diagnostic tools for these viruses, and for developing therapeutic approaches to diseases caused by EEHV."

Elephant populations have been plummeting. African elephants declined roughly from 10 million to half a million during the 20th century, due largely to habitat destruction, and intense poaching has since further decimated their numbers. Asian elephants, once in the millions, now number less than 50,000. They are threatened mostly by habitat fragmentation. Poaching is not an issue since they lack tusks.

###

The full papers will appear in the December issue of the Journal of Virology.

Journal of Virology is a publication of the American Society for Microbiology (ASM). The ASM is the largest single life science society, composed of over 39,000 scientists and health professionals. Its mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Garth Hogan | Eurek Alert!

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>