Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Written in Red

Red-Emitting Dyes for Optical Microscopy and Nanoscopy

Far-field optical nanoscopy methods, especially STED (stimulated emission depletion), pose very strict and, at times, contradictory requirements on the utilized fluorescent markers. Photostable fluorescent dyes that absorb in the red optical region are indispensable as labels for various micro- and nanoscopic studies (e.g., with commercially available STED microscopes).

Despite many attempts to design novel and improved red-emitting dyes, the number of compounds that perform satisfactorily in fluorescence-based microscopy is still limited. Because of this, a great deal of research is being carried out by a large multidisciplinary team headed by Prof. Stefan W. Hell at the Department of NanoBiophotonics in Max Planck Institute for Biophysical Chemistry (Göttingen). In their recent paper published in the European Journal of Organic Chemistry the team describes a general synthetic route to new improved carbopyronine dyes and their performance in confocal and STED microscopy.

The new dyes have large fluorescence quantum yields, high water solubility, and the required positions of the absorption and emission bands in the red. The chemists came up with a synthetically feasible structural scaffold with functional groups that can be varied in the final steps of the synthesis or even in the resulting fluorescent dye to fit a given task. According to Dr. Kirill Kolmakov, who performed the synthesis, his “table book” contained a dissertation and articles and patents by Prof. K. Drexhage and co-workers, whose contribution to the synthesis of carbopyronines is fundamental. However, the synthetic approach presented in their EurJOC article is by far more flexible and improved. In particular, it starts from one simple precursor and utilizes a minimum amount of protecting groups. The key feature of the general strategy described therein is the interplay of certain protecting groups. Protecting groups will take an even more important part in the design and synthesis of caged carbopyronines and rhodamines that emit in the far-red spectral region. Besides the interesting chemistry, the team demonstrates that the performance of a dye in confocal microscopy and under STED conditions does not necessarily correlate. Dr. Kolmakov thus emphasizes that for their future research work, they will have to reconsider some of their old views on the “ideal” STED dye. All these make the primary article a good example of teamwork that is strategically sound, brilliantly planned, and perfectly delivered.

Author: Vladimir N. Belov, Max Planck Institute for Biophysical Chemistry, Göttingen (Germany),

Title: A Versatile Route to Red-Emitting Carbopyronine Dyes for Optical Microscopy and Nanoscopy

European Journal of Organic Chemistry , 2010, No. 19, 3593–3610, Permalink to the article:

Vladimir N. Belov | Wiley-VCH
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>