Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Happens When Worms Stick Together?

09.02.2011
Nematodes, microscopic worms, are making engineers look twice at their ability to exhibit the “Cheerios effect” when they move in a collective motion.

These parasites will actually stick together like Cheerios swimming in milk in a cereal bowl after a chance encounter “due to capillary force.” This observation has made Virginia Tech engineers speculate about the possible impacts on the study of biolocomotion.

Their work appears in the journal, Soft Matter, a publication of the Royal Society of Chemistry, the week of Feb. 7. Soft Matter is the premier journal in the ongoing multidisciplinary work between physics, material science, and biology. http://www.rsc.org/Publishing/Journals/sm/News/impactfactor_2009.asp

Two Harvard physicists first defined the Cheerios effect. In 2005, Dominic Vella and Lakshminarayanan Mahadevan wrote an article on this activity, defined by scientists as relating to fluid mechanics, in the Journal of Physics. They cited its usefulness in the study of self-assembly of small structures. Self-assembly is used in the science of nanotechnology.

Dominic Vella who now teaches at the University of Oxford, United Kingdom, collaborated with Sunghwan “Sunny” Jung, an assistant professor of engineering science and mechanics at Virginia Tech, and his student, Sean Gart, of Salem, Va., a senior in engineering science and mechanics, and authored the new paper, “The collective motion of nematodes in a thin liquid layer.”

Their work highlights the behaviors of the nematode Panagrellus redivivus, a creature that feeds on bacteria, in a watery liquid layer that is thinner than a human hair. In this environment the nematodes crawl by creating waves that travel backwards down their body, and the force pushes them forward.

“The inspiration for the project came when we observed the nematodes crawling up the side of their container and sticking together. We knew part of the reason for this behavior was due to the capillary force, the same force that causes Cheerios to stick together in a cereal bowl, but we wanted to see whether or not the nematodes moved faster or more efficiently while stuck together,” Jung and Gart explained.

“Thin water refers to the air/liquid interface. Like Cheerios in milk, the nematodes are aggregating on top of the air surface, not on the bulk or on the bottom,” Jung said.

Gart has been working in Virginia Tech’s Biologically Inspired Fluids Laboratory directed by Jung since last summer. Gart found that the nematodes did not crawl faster or more efficiently while stuck together.

“This is an interesting behavior that has not been studied very widely in the biolocomotion field,” Jung said. “The result implies that nematodes gain neither a mechanical advantage nor disadvantage by being grouped together. The capillary forces merely keep them together after a chance encounter. This result also extends a better understanding of capillary effects in colloidal particles in engineering systems such as pickering emulsions. These emulsions are stabilized by solid particles. An example would be homogenized milk.”

Read the article at http://pubs.rsc.org/en/Content/ArticleLanding/2011/SM/C0SM01236J

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu

Further reports about: Cheerios Soft Matter Soft Skills capillary force microscopic worms nematodes

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>