Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

What Happens When Worms Stick Together?

09.02.2011
Nematodes, microscopic worms, are making engineers look twice at their ability to exhibit the “Cheerios effect” when they move in a collective motion.

These parasites will actually stick together like Cheerios swimming in milk in a cereal bowl after a chance encounter “due to capillary force.” This observation has made Virginia Tech engineers speculate about the possible impacts on the study of biolocomotion.

Their work appears in the journal, Soft Matter, a publication of the Royal Society of Chemistry, the week of Feb. 7. Soft Matter is the premier journal in the ongoing multidisciplinary work between physics, material science, and biology. http://www.rsc.org/Publishing/Journals/sm/News/impactfactor_2009.asp

Two Harvard physicists first defined the Cheerios effect. In 2005, Dominic Vella and Lakshminarayanan Mahadevan wrote an article on this activity, defined by scientists as relating to fluid mechanics, in the Journal of Physics. They cited its usefulness in the study of self-assembly of small structures. Self-assembly is used in the science of nanotechnology.

Dominic Vella who now teaches at the University of Oxford, United Kingdom, collaborated with Sunghwan “Sunny” Jung, an assistant professor of engineering science and mechanics at Virginia Tech, and his student, Sean Gart, of Salem, Va., a senior in engineering science and mechanics, and authored the new paper, “The collective motion of nematodes in a thin liquid layer.”

Their work highlights the behaviors of the nematode Panagrellus redivivus, a creature that feeds on bacteria, in a watery liquid layer that is thinner than a human hair. In this environment the nematodes crawl by creating waves that travel backwards down their body, and the force pushes them forward.

“The inspiration for the project came when we observed the nematodes crawling up the side of their container and sticking together. We knew part of the reason for this behavior was due to the capillary force, the same force that causes Cheerios to stick together in a cereal bowl, but we wanted to see whether or not the nematodes moved faster or more efficiently while stuck together,” Jung and Gart explained.

“Thin water refers to the air/liquid interface. Like Cheerios in milk, the nematodes are aggregating on top of the air surface, not on the bulk or on the bottom,” Jung said.

Gart has been working in Virginia Tech’s Biologically Inspired Fluids Laboratory directed by Jung since last summer. Gart found that the nematodes did not crawl faster or more efficiently while stuck together.

“This is an interesting behavior that has not been studied very widely in the biolocomotion field,” Jung said. “The result implies that nematodes gain neither a mechanical advantage nor disadvantage by being grouped together. The capillary forces merely keep them together after a chance encounter. This result also extends a better understanding of capillary effects in colloidal particles in engineering systems such as pickering emulsions. These emulsions are stabilized by solid particles. An example would be homogenized milk.”

Read the article at http://pubs.rsc.org/en/Content/ArticleLanding/2011/SM/C0SM01236J

Lynn A. Nystrom | Newswise Science News
Further information:
http://www.vt.edu

Further reports about: Cheerios Soft Matter Soft Skills capillary force microscopic worms nematodes

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>