Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

From worm to man

10.08.2011
Flatworms provide new insight into organ regeneration and the evolution of mammalian kidneys

Our bodies are perfectly capable of renewing billions of cells every day but fail miserably when it comes to replacing damaged organs such as kidneys. Using the flatworm Schmidtea mediterranea—famous for its capacity to regrow complete animals from minuscule flecks of tissue—as an eloquent example, researchers at the Stowers Institute for Medical Research demonstrated how our distant evolutionary cousins regenerate their excretory systems from scratch.


Planaria have a network of fine tubules (shown in white) running throughout their bodies. The tubules are connected to bulb-like structures called flame cells. These cells contain cilia, which move the fluids toward the excretory pores located throughout the epidermis. Credit: Courtesy of the Sanchéz Alvarado lab, Stowers Institute for Medical Research

In the process, the Stowers team led by Howard Hughes Medical Institute and Stowers investigator Alejandro Sanchéz Alvarado, Ph.D., not only established flatworms as a valuable model system to study tissue maintenance and organ regeneration but also provided new clues about the evolutionary origin of mammalian kidneys. Their study is published in the current issue of the journal Development.

"The past ten years of planaria research have shown that planarians use pretty much the same molecular toolkit for building their bodies as other animals," says first author Jochen Rink, Ph.D., formerly a postdoctoral researcher in the Sanchéz lab and now a group leader at the Max-Planck-Institute of Molecular Cell Biology and Genetics in Dresden, Germany. "Because of this fundamental similarity between all animals, understanding how a worm assembles its excretory system may very well be relevant to understanding kidney physiology and regeneration in humans," he adds.

Most animals studied in the lab fall within two main branches on the evolutionary tree of life: mice, rats, and salamanders are part of the vertebrate lineage, while fruit flies and the roundworm Ceanorhabditis elegans belong to the lineage encompassing molting animals. "People have drawn conclusions about the evolution of certain attributes by looking exclusively at these two branches," says Sanchéz Alvarado. "That's akin to trying to work out your family tree but ignoring your entire maternal lineage."

In contrast, flatworms, also known as planaria, are part of a branch that has been largely ignored by modern molecular biology. "The so called lophotrochozoa are an incredibly large and diverse group of animals we know very little about," explains Sanchéz Alvarado.

What was known is that—unlike fruit flies and C. elegans—planaria possess very complex excretory systems akin in many respects to mammalian kidneys. "Planarian protonephridia are so far the only invertebrate model system that combines pressure filtration with filtrate modification similar to mammalian nephrons, the basic functional unit of the kidney," explains Rink. Their anatomy, however, was not well understood.

When Rink and co-first author Hanh Thi-Kim Vu, Ph.D., a graduate student in the Sanchez Alvarado lab, analyzed their structure with the help of electron microscopy, the scientists found that planarian protonephridia are complex epithelial organs that organized in a consistent and hierarchical manner: a distal tubule branching out into proximal tubules, each of which is topped by a ciliated flame cell—so named because under a microscope the beating of the cilia resembles a flickering candle.

But more importantly, they noticed that the endothelia forming the tubules are composed of a fixed succession of different cell types along their length reminiscent of the mammalian condition. "This suggests to us that the mammalian kidney originated before the branches split," says Sanchéz Alvarado. "The homologous structures in fruit flies and C. elegans diversified and diverged till they no longer resembled their common ancestor."

Protonephridia are distributed throughout a flatworm's body. To study their development researchers could simply cut the animals' heads off and watch how they regrew the missing body part including excretory tubules within a week. They found that protonephridial tubules originated from a precursor structure, which undergoes extensive branching morphogenesis, the same process that also shapes vertebrate organs such as lung, kidneys or mammary glands.

When Rink interfered with the expression of EGFR5, short for epidermal growth factor receptor, during the regeneration process protonephridia could no longer undergo branching morphogenesis. If he did the same in non-regenerating planaria, they were unable to maintain the structural integrity of their protonephridia, which told him that under normal conditions the organ is constantly maintained through cell renewal.

"We take it for granted that we go to bed with two sets of fully functional kidneys and that we wake up with them the next morning but we don't understand the fundamental processes that give rise to this very well choreographed maintenance of an organism's form and function," says Sanchéz Alvarado. "We can now start to use planaria as a model to begin to understand how an adult animals maintain their form and function over a very long time."

The work was funded in part by the Howard Hughes Medical Institute and by the National Institutes of Health, National Institute of General Medical Sciences.

About the Stowers Institute for Medical Research

The Stowers Institute for Medical Research is a non-profit, basic biomedical research organization dedicated to improving human health by studying the fundamental processes of life. Jim Stowers, founder of American Century Investments, and his wife Virginia opened the Institute in 2000. Since then, the Institute has spent over a half billion dollars in pursuit of its mission.

Currently the Institute is home to nearly 500 researchers and support personnel; over 20 independent research programs; and more than a dozen technology development and core facilities. Learn more about the Institute at http://www.stowers.org.

Gina Kirchweger | EurekAlert!
Further information:
http://www.stowers.org

More articles from Life Sciences:

nachricht Are there sustainable solutions in dealing with dwindling phosphorus resources?
16.10.2017 | Leibniz-Institut für Nutzierbiologie (FBN)

nachricht Strange undertakings: ant queens bury dead to prevent disease
13.10.2017 | Institute of Science and Technology Austria

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

Im Focus: New nanomaterial can extract hydrogen fuel from seawater

Hybrid material converts more sunlight and can weather seawater's harsh conditions

It's possible to produce hydrogen to power fuel cells by extracting the gas from seawater, but the electricity required to do it makes the process costly. UCF...

Im Focus: Small collisions make big impact on Mercury's thin atmosphere

Mercury, our smallest planetary neighbor, has very little to call an atmosphere, but it does have a strange weather pattern: morning micro-meteor showers.

Recent modeling along with previously published results from NASA's MESSENGER spacecraft -- short for Mercury Surface, Space Environment, Geochemistry and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

Conference Week RRR2017 on Renewable Resources from Wet and Rewetted Peatlands

28.09.2017 | Event News

 
Latest News

A single photon reveals quantum entanglement of 16 million atoms

16.10.2017 | Physics and Astronomy

The melting ice makes the sea around Greenland less saline

16.10.2017 | Earth Sciences

On the generation of solar spicules and Alfvenic waves

16.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>