Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World breakthrough on salt-tolerant wheat

12.03.2012
A team of Australian scientists has bred salt tolerance into a variety of durum wheat that shows improved grain yield by 25% on salty soils.

Using 'non-GM' crop breeding techniques, scientists from CSIRO Plant Industry have introduced a salt-tolerant gene into a commercial durum wheat, with spectacular results shown in field tests. Researchers at the University of Adelaide's Waite Research Institute have led the effort to understand how the gene delivers salinity tolerance to the plants.

The research is the first of its kind in the world to fully describe the improvement in salt tolerance of an agricultural crop - from understanding the function of the salt-tolerant genes in the lab, to demonstrating increased grain yields in the field.

The results are published today in the journal Nature Biotechnology. The paper's senior author is Dr Matthew Gilliham from the University's Waite Research Institute and the ARC Centre of Excellence in Plant Energy Biology. Lead authors are CSIRO Plant Industry scientists Dr Rana Munns and Dr Richard James and University of Adelaide student Bo Xu.

"This work is significant as salinity already affects over 20% of the world's agricultural soils, and salinity poses an increasing threat to food production due to climate change," Dr Munns says.

Dr Gilliham says: "Salinity is a particular issue in the prime wheat-growing areas of Australia, the world's second-largest wheat exporter after the United States. With global population estimated to reach nine billion by 2050, and the demand for food expected to rise by 100% in this time, salt-tolerant crops will be an important tool to ensure future food security."

Domestication and breeding has narrowed the gene pool of modern wheat, leaving it susceptible to environmental stress. Durum wheat, used for making such food products as pasta and couscous, is particularly susceptible to soil salinity.

However, the authors of this study realised that wild relatives of modern-day wheat remain a significant source of genes for a range of traits, including salinity tolerance. They discovered the new salt-tolerant gene in an ancestral cousin of modern-day wheat, Triticum monococcum.

"Salty soils are a major problem because if sodium starts to build up in the leaves it will affect important processes such as photosynthesis, which is critical to the plant's success," Dr Gilliham says.

"The salt-tolerant gene (known as TmHKT1;5-A) works by excluding sodium from the leaves. It produces a protein that removes the sodium from the cells lining the xylem, which are the 'pipes' plants use to move water from their roots to their leaves," he says.

Dr James, who led the field trials, says: "While most studies only look at performance under controlled conditions in a laboratory or greenhouse, this is the first study to confirm that the salt-tolerant gene increases yields on a farm with saline soils.

Field trials were conducted at a variety of sites across Australia, including a commercial farm in northern New South Wales.

"Importantly, there was no yield penalty with this gene," Dr James says.

"Under standard conditions, the wheat containing the salt-tolerance gene performed the same in the field as durum that did not have the gene. But under salty conditions, it outperformed its durum wheat parent, with increased yields of up to 25%.

"This is very important for farmers, because it means they would only need to plant one type of seed in a paddock that may have some salty sections," Dr James says.

"The salt-tolerant wheat will now be used by the Australian Durum Wheat Improvement Program (ADWIP) to assess its impact by incorporating this into recently developed varieties as a breeding line."

Dr Munns says new varieties of salt-tolerant durum wheat could be a commercial reality in the near future.

"Although we have used molecular techniques to characterise and understand the salt-tolerant gene, the gene was introduced into the durum wheat through 'non-GM' breeding processes. This means we have produced a novel durum wheat that is not classified as transgenic, or 'GM', and can therefore be planted without restriction," she says.

The researchers are also taking their work a step further and have now crossed the salt-tolerance gene into bread wheat. This is currently being assessed under field conditions.

This research is a collaborative project between CSIRO, NSW Department of Primary Industries, University of Adelaide, the Australian Centre for Plant Functional Genomics and the ARC Centre of Excellence in Plant Energy Biology. It is supported by the Grains Research and Development Corporation (GRDC) and Australian Research Council (ARC).

Dr. Matthew Gilliham | EurekAlert!
Further information:
http://www.adelaide.edu.au

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>