Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

World's first handmade cloned transgenic sheep born in China

19.04.2012
Chinese scientists from BGI, the world's largest genomics organization, together with the Institute of Genetics and Developmental Biology, Chinese Academy of Sciences (CAS), and Shihezi University, Xinjiang province, made a significant breakthrough in animal cloning.
The world's first transgenic sheep produced with a simplified technique, handmade cloning, was successfully born at 12:16pm, March 26, 2012, in Xinjiang Uygur Autonomous Region, China. The project was also supported by the Animal Science Academy of Xinjiang.

"The transgenic sheep is named 'Peng Peng' (after the identical given names of the two cloners), his birth weight was 5.74 kg." said excitedly Dr. Yutao Du, Director of BGI Ark Biotechnology Co., LTD. (BAB), one of BGI's affiliates focusing on large scale production of transgenic and cloned animals. "Peng Peng is developing normally and appears healthy" she added.

The project has been launched more than two years ago. Apart from the general inefficiency of cloning (only a small fraction of the reconstructed embryos develop to healthy offspring) cloners had to overcome additional difficulties including the special climate and compromised laboratory environment with very basic instruments. Accordingly, an innovative simplified technique called Handmade Cloning (HMC) was used, with less demand for sophisticated equipment, simplified procedures, lower costs and higher production efficiency. In 2009, donor cells were collected from a Chinese Merino sheep, and by genetic manipulation a transgenic cell line was established. After numerous attempts, the HMC system for sheep cloning was successfully established in October 2011. The transfer of the produced embryos has eventually led to the present achievement.

The genetic modification may result in improved meat quality by increasing the unsaturated fatty acid content. According to the researchers, the gene associated withù-3 poly unsaturated fatty acid (ù-3PUFA) was successfully transferred into Peng Peng. ù-3PUFAs serve as essential fatty acids for humans reducing the risk of coronary heart disease and supporting the normal development of the brain, eye and neurons. "The birth of Peng Peng means that people could absorb ù-3PUFAs by drinking milk or eating meat in the future." said Dr. Du, "The most difficult task has been accomplished, the transgenic sheep production platform is established, we are ready for the industrial-scale development."

Since HMC was introduced in 2001, offspring of several important species including cattle, pig, goat and water buffalo have been produced by using this technique. The procedure may contribute to efforts to save endangered species and to produce medicines for human diseases through transgenic animals.

Last year, BGI has made great achievements on cloned transgenic mini-pigs and micro-pigs. Last August, a heroic pig, named Zhu Jiangqiang (Strong-Willed Pig), who had survived more than a month buried under rubble after the 2008 earthquake in China's Sichuan province was also cloned, producing 6 piglets identical with the famous animal. "With each new species cloned, we learn more about the possible contribution of HMC to improve the health of animals and humans." said Dr. Du. "I expect more breakthroughs on transgenic and cloned animal research in the foreseeable future."
About BGI Ark Biotechnology Co., LTD

BGI Ark Biotechnology Co., LTD. Shenzhen (BAB), affiliated to BGI, is a high-tech enterprise, mainly focusing on mass production of transgenic and cloned animals.

Based on a core technology named Handmade Cloning (HMC), BAB has established a reliable and efficient standard production system, including vector construction, screening of genetically modified cell lines, reconstruction of cloned embryos, embryo transfer, among others.

Compared with traditional cloning, the benefits of handmade cloning are great. Low equipment costs, a simple and rapid procedure and a higher in vitro efficiency are valuable for large scale research in medical and agricultural sciences.

For more information about BAB, please visit www.bab-genomics.com.
About BGI

BGI was founded in Beijing, China, in 1999 with the mission to become a premier scientific partner for the global research community. The goal of BGI is to make leading-edge genomic science highly accessible, which it achieves through its investment in infrastructure, leveraging the best available technology, economies of scale, and expert bioinformatics resources. BGI, and its affiliates, BGI Americas, headquartered in Cambridge, MA, and BGI Europe, headquartered in Copenhagen, Denmark, have established partnerships and collaborations with leading academic and government research institutions as well as global biotechnology and pharmaceutical companies, supporting a variety of disease, agricultural, environmental, and related applications.

BGI has a proven track record of excellence, delivering results with high efficiency and accuracy for innovative, high-profile research: research that has generated over 170 publications in top-tier journals such as Nature and Science. BGI's many accomplishments include: sequencing one percent of the human genome for the International Human Genome Project, contributing 10 percent to the International Human HapMap Project, carrying out research to combat SARS and German deadly E. coli, playing a key role in the Sino-British Chicken Genome Project, and completing the sequence of the rice genome, the silkworm genome, the first Asian diploid genome, the potato genome, and, more recently, have sequenced the human Gut Metagenome, and a significant proportion of the genomes for the 1000 Genomes Project.

For more information about BGI, please visit www.genomics.cn

Jia Liu | EurekAlert!
Further information:
http://www.genomics.cn

Further reports about: BGI Biotechnology Chinese herbs Cloning Genom HMC Handmade Ltd Xinjiang fatty acid saturated fat saturated fatty acid

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>