Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Woodpecker research unlocks the key to avoiding head injury

22.11.2011
Why don't woodpeckers injure themselves? Researchers at Hong Kong Polytechnic University and the Beihang University in Beijing have been investigating...

A pioneering study by researchers of The Hong Kong Polytechnic University (PolyU) and the Beihang University in Beijing has unravelled the mystery of why woodpeckers don't hurt themselves in the act of pecking on the trees. This finding is expected to provide fresh insights on the safety design of helmets and other related products.


Comuptation models were developed by the researchers to show the stress distributions with different lengths of beaks. Copyright : PolyU

The research was jointly led by Professor Ming Zhang of PolyU's Department of Health Technology and Informatics and Professor Yubo Fan of Beihang University. A series of experimental studies and computer simulation were conducted. Two synchronous high-speed video systems were used to observe the pecking motion, and a force sensor was used to measure the pecking force. The mechanical properties and macro/micro morphological structure in the woodpecker's head were investigated using a mechanical testing system and micro-CT scanning. Computational models of the woodpecker's head were established to study the dynamic intracranial responses.

Based on the result of this study, the research team has come up with answers on why the repeated daily head-banging motion of woodpeckers does not sustain any brain injury. The experimental data and simulation showed that three factors are at work in sparing the injury.

Firstly, the skulls of woodpeckers are protected by hyoid bone's looping structures which acts as a kind of "safety belt". Secondly, the upper and lower halves of the birds' beaks are uneven in length - this asymmetry lowers the impact of pecking force transmitted from the tip of the beak onto the brain. Last but not least, the "spongy" bone structure at different points in the skull helps distribute the incoming force, thereby protecting the brain.

The team says it's the combination of these three features that allows woodpeckers to peck without injury. It is anticipated that more quantitative studies will take place before applying the bio-mechanism to human protective device design and probably industry design.

The study was published in the online edition of PloS ONE journal.

Press Contacts
Professor Ming Zhang
Department of Health Technology and Informatics
Tel: (852) 2766 4939
Email: ming.zhang@polyu.edu.hk

Wilfred Lai | Research asia research news
Further information:
http://www.polyu.edu.hk
http://www.researchsea.com

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Researchers invent tiny, light-powered wires to modulate brain's electrical signals

21.02.2018 | Life Sciences

The “Holy Grail” of peptide chemistry: Making peptide active agents available orally

21.02.2018 | Life Sciences

Atomic structure of ultrasound material not what anyone expected

21.02.2018 | Materials Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>