Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wistar scientists find key to strengthening immune response to chronic infection

10.08.2009
A team of researchers from The Wistar Institute has identified a protein that could serve as a target for reprogramming immune system cells exhausted by exposure to chronic viral infection into more effective "soldiers" against certain viruses like HIV, hepatitis C, and hepatitis B, as well as some cancers, such as melanoma.

Effective response by key immune cells in the body, called T cells, is crucial for control of many widespread chronic viral infections such as HIV and hepatitis B and C. Virus-specific CD8 T cells, also known as "killer" T cells, often lose their ability to control viral replication and become less effective over time, a process known as T cell exhaustion.

Understanding how optimal antiviral T cell responses are suppressed in these circumstances is crucial to developing strategies to prevent and treat such persisting infections.

In the August 6 on-line issue of Immunity, the research team led by Wistar assistant professor E. John Wherry, Ph.D., describes how the protein Blimp-1 (B-lymphocyte-induced maturation protein 1) represses the normal differentiation of CD8 T cells into memory T cells, which recognize disease-causing agents from previous infections and enable the body to mount faster, stronger immune responses. The team also reports that Blimp-1 causes exhausted CD8 T cells to express inhibitory receptors, which prevent recognition of specific antigens, further weakening immune response.

The researchers describe how complete deletion of Blimp-1, which is overexpressed in CD8 T cells during chronic viral infection, reversed these aspects of T cell exhaustion. By identifying Blimp-1 as a transcription factor associated with T cell exhaustion the findings open the window for reprogramming exhausted killer T cells back into prime infection-fighting form.

"We are very excited by the identification of Blimp-1 as a key transcriptional regulator of T cell exhaustion," says senior author Wherry. "Transcription factors like Blimp-1 are key molecules involved in global control of cell fate and differentiation, and Blimp-1 in particular prevents cells from de-differentiating or re-differentiating.

"In other words," continues Wherry, "if we want to make an exhausted T cell a more effective soldier against an infection like HIV, we need to change its differentiation state. Much like scientists are now re-programming terminally differentiated tissues cells to become tissue stem cells, the identification of Blimp-1 in terminally differentiated exhausted T cells suggest that future therapeutics could target this molecule to help re-differentiate exhausted T cells into more functional antiviral effector and/or memory T cells."

To determine whether Blimp-1 expression is associated with T cell exhaustion in chronic infection, the team examined Blimp-1 expression in mouse models of acute and chronic lymphocytic choriomeningitis virus (LCMV). In the mice with acute infection, Blimp-1 decreased modestly after the first week of infection. Conversely, Blimp-1 was highly upregulated in CD8 T cells in chronically infected mice by 15 days post-infection, and remained highly expressed for at least one month. The pattern of Blimp-1 expression suggested a correlation between Blimp-1 expression and T cell dysfunction and/or terminal differentiation.

In further studies to explore how Blimp-1 expression affects T cell differentiation, the team administered LCMV to mice in which a gene encoding Blimp-1 was conditionally deleted. Results showed increased numbers of antigen-specific CD8 T cells, restoration of some key aspects of normal memory CD8 T cell differentiation, and partial restoration of antigen-specific CD8 T cell populations that were otherwise terminally differentiated and deleted during chronic viral infection.

Study investigators also included Haina Shin, Ph.D., Shawn D. Blackburn, Ph.D., Charlly Kao, Ph.D., and Jill M. Angelosanto, B.S., from the Immunology Program and Vaccine Center at Wistar; and Andrew M. Intlekofer, M.D., Ph.D., and Steven L. Reiner, M.D., from the Abramson Family Cancer Research Institute, Department of Medicine, University of Pennsylvania.

This work was funded by grants from the National Institutes of Health (AI071309 and HHSN26620050030C), the Grand Challenges in Global Health Initiative, The Dana Foundation, and The Ellison Medical Foundation.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today's Discoveries – Tomorrow's Cures.

Susan Finkelstein | EurekAlert!
Further information:
http://www.wistar.org

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>