Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wistar scientists find key to strengthening immune response to chronic infection

A team of researchers from The Wistar Institute has identified a protein that could serve as a target for reprogramming immune system cells exhausted by exposure to chronic viral infection into more effective "soldiers" against certain viruses like HIV, hepatitis C, and hepatitis B, as well as some cancers, such as melanoma.

Effective response by key immune cells in the body, called T cells, is crucial for control of many widespread chronic viral infections such as HIV and hepatitis B and C. Virus-specific CD8 T cells, also known as "killer" T cells, often lose their ability to control viral replication and become less effective over time, a process known as T cell exhaustion.

Understanding how optimal antiviral T cell responses are suppressed in these circumstances is crucial to developing strategies to prevent and treat such persisting infections.

In the August 6 on-line issue of Immunity, the research team led by Wistar assistant professor E. John Wherry, Ph.D., describes how the protein Blimp-1 (B-lymphocyte-induced maturation protein 1) represses the normal differentiation of CD8 T cells into memory T cells, which recognize disease-causing agents from previous infections and enable the body to mount faster, stronger immune responses. The team also reports that Blimp-1 causes exhausted CD8 T cells to express inhibitory receptors, which prevent recognition of specific antigens, further weakening immune response.

The researchers describe how complete deletion of Blimp-1, which is overexpressed in CD8 T cells during chronic viral infection, reversed these aspects of T cell exhaustion. By identifying Blimp-1 as a transcription factor associated with T cell exhaustion the findings open the window for reprogramming exhausted killer T cells back into prime infection-fighting form.

"We are very excited by the identification of Blimp-1 as a key transcriptional regulator of T cell exhaustion," says senior author Wherry. "Transcription factors like Blimp-1 are key molecules involved in global control of cell fate and differentiation, and Blimp-1 in particular prevents cells from de-differentiating or re-differentiating.

"In other words," continues Wherry, "if we want to make an exhausted T cell a more effective soldier against an infection like HIV, we need to change its differentiation state. Much like scientists are now re-programming terminally differentiated tissues cells to become tissue stem cells, the identification of Blimp-1 in terminally differentiated exhausted T cells suggest that future therapeutics could target this molecule to help re-differentiate exhausted T cells into more functional antiviral effector and/or memory T cells."

To determine whether Blimp-1 expression is associated with T cell exhaustion in chronic infection, the team examined Blimp-1 expression in mouse models of acute and chronic lymphocytic choriomeningitis virus (LCMV). In the mice with acute infection, Blimp-1 decreased modestly after the first week of infection. Conversely, Blimp-1 was highly upregulated in CD8 T cells in chronically infected mice by 15 days post-infection, and remained highly expressed for at least one month. The pattern of Blimp-1 expression suggested a correlation between Blimp-1 expression and T cell dysfunction and/or terminal differentiation.

In further studies to explore how Blimp-1 expression affects T cell differentiation, the team administered LCMV to mice in which a gene encoding Blimp-1 was conditionally deleted. Results showed increased numbers of antigen-specific CD8 T cells, restoration of some key aspects of normal memory CD8 T cell differentiation, and partial restoration of antigen-specific CD8 T cell populations that were otherwise terminally differentiated and deleted during chronic viral infection.

Study investigators also included Haina Shin, Ph.D., Shawn D. Blackburn, Ph.D., Charlly Kao, Ph.D., and Jill M. Angelosanto, B.S., from the Immunology Program and Vaccine Center at Wistar; and Andrew M. Intlekofer, M.D., Ph.D., and Steven L. Reiner, M.D., from the Abramson Family Cancer Research Institute, Department of Medicine, University of Pennsylvania.

This work was funded by grants from the National Institutes of Health (AI071309 and HHSN26620050030C), the Grand Challenges in Global Health Initiative, The Dana Foundation, and The Ellison Medical Foundation.

The Wistar Institute is an international leader in biomedical research with special expertise in cancer research and vaccine development. Founded in 1892 as the first independent nonprofit biomedical research institute in the country, Wistar has long held the prestigious Cancer Center designation from the National Cancer Institute. The Institute works actively to ensure that research advances move from the laboratory to the clinic as quickly as possible. The Wistar Institute: Today's Discoveries – Tomorrow's Cures.

Susan Finkelstein | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>