Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wing bling: For female butterflies, flashier is better

12.06.2012
If female butterflies are programmed to identify males of their species by the patterns of spots on their wings, how can new wing patterns evolve in males?

The answer is that while females are predisposed to prefer a specific pattern, they learn to like flashier ones more, according to a new Yale University study.


With only limited exposure, female butterflies can learn to prefer males with four spots on their wings, even though males of their species generally sport two spots. Credit: courtesy of Yale University

The study published online the week of June 11 in the Proceedings of the National Academy of Sciences gives a partial explanation of an evolutionary mystery.

Biologists used to think that preference for certain traits such as wing spots are hardwired into insects. But that left scientists wondering how butterflies managed to evolve such great diversity in their wing coloration.

The Yale team studied the butterfly species Bicyclus anynana, which in the wild has two spots on its wings. The researchers found that female butterflies of the species learn to prefer males with four spots on their wings over those with two spots.

"What surprised us was that females learn this preference after being in the presence of males for just a very short period of time," said Erica L. Westerman of Yale's Department of Evolutionary Biology and Ecology (EEB) and lead author "The male did not have to court them or engage in flashy behavior."

While other studies have found that invertebrates can learn new preferences, the Yale researchers were surprised to find that an insect species like the butterfly actually can learn to favor some wing patterns more than others.

When exposed to butterflies with four brilliant ultraviolet-reflecting spots for only three hours, females no longer show preference for the type of males found in the wild. But females initially exposed to drabber males with one or zero spots did not change their original preferences.

"There is a bias in what females learn, and they learn extra ornamentation is better," said Antónia Monteiro, EEB professor and senior author of the paper.

The findings that social environment can change mating preference of female butterflies helps explain how novel wing patterns evolve, say the researchers Now Westerman wants to discover how female butterflies learn to make these choices.

"What we have found is a previously unexplored mechanism for biasing the evolution of morphological diversity," Westerman said. "We are now investigating what other cues are being evaluated during the learning period and what prevents females from mating with members of other species."

Study was funded by the National Science Foundation and Yale.

Yale's Andrea Hodgins-Davis and April Dinwiddie were co-authors of the pape

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

Im Focus: A transistor of graphene nanoribbons

Transistors based on carbon nanostructures: what sounds like a futuristic dream could be reality in just a few years' time. An international research team working with Empa has now succeeded in producing nanotransistors from graphene ribbons that are only a few atoms wide, as reported in the current issue of the trade journal "Nature Communications."

Graphene ribbons that are only a few atoms wide, so-called graphene nanoribbons, have special electrical properties that make them promising candidates for the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

Blockchain is becoming more important in the energy market

05.12.2017 | Event News

 
Latest News

Making fuel out of thick air

08.12.2017 | Life Sciences

Rules for superconductivity mirrored in 'excitonic insulator'

08.12.2017 | Information Technology

Smartphone case offers blood glucose monitoring on the go

08.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>