Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wing bling: For female butterflies, flashier is better

12.06.2012
If female butterflies are programmed to identify males of their species by the patterns of spots on their wings, how can new wing patterns evolve in males?

The answer is that while females are predisposed to prefer a specific pattern, they learn to like flashier ones more, according to a new Yale University study.


With only limited exposure, female butterflies can learn to prefer males with four spots on their wings, even though males of their species generally sport two spots. Credit: courtesy of Yale University

The study published online the week of June 11 in the Proceedings of the National Academy of Sciences gives a partial explanation of an evolutionary mystery.

Biologists used to think that preference for certain traits such as wing spots are hardwired into insects. But that left scientists wondering how butterflies managed to evolve such great diversity in their wing coloration.

The Yale team studied the butterfly species Bicyclus anynana, which in the wild has two spots on its wings. The researchers found that female butterflies of the species learn to prefer males with four spots on their wings over those with two spots.

"What surprised us was that females learn this preference after being in the presence of males for just a very short period of time," said Erica L. Westerman of Yale's Department of Evolutionary Biology and Ecology (EEB) and lead author "The male did not have to court them or engage in flashy behavior."

While other studies have found that invertebrates can learn new preferences, the Yale researchers were surprised to find that an insect species like the butterfly actually can learn to favor some wing patterns more than others.

When exposed to butterflies with four brilliant ultraviolet-reflecting spots for only three hours, females no longer show preference for the type of males found in the wild. But females initially exposed to drabber males with one or zero spots did not change their original preferences.

"There is a bias in what females learn, and they learn extra ornamentation is better," said Antónia Monteiro, EEB professor and senior author of the paper.

The findings that social environment can change mating preference of female butterflies helps explain how novel wing patterns evolve, say the researchers Now Westerman wants to discover how female butterflies learn to make these choices.

"What we have found is a previously unexplored mechanism for biasing the evolution of morphological diversity," Westerman said. "We are now investigating what other cues are being evaluated during the learning period and what prevents females from mating with members of other species."

Study was funded by the National Science Foundation and Yale.

Yale's Andrea Hodgins-Davis and April Dinwiddie were co-authors of the pape

Bill Hathaway | EurekAlert!
Further information:
http://www.yale.edu

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>