Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cells found to play key role in controlling red blood cell levels

18.03.2013
Researchers at Albert Einstein College of Medicine of Yeshiva University and the Icahn School of Medicine at Mount Sinai have found that macrophages – white blood cells that play a key role in the immune response – also help to both produce and eliminate the body's red blood cells (RBCs).

The findings could lead to novel therapies for diseases or conditions in which the red blood cell production is thrown out of balance. The study, conducted in mice, is published today in the online edition of the journal Nature Medicine.

"Our findings offer intriguing new insights into how the body maintains a healthy balance of red blood cells," said study leader Paul Frenette, M.D., professor of medicine and of cell biology and director of the Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research at Einstein.

"We've shown that macrophages in the bone marrow and the spleen nurture the production of new red blood cells at the same time that they clear aging red blood cells from the circulation. This understanding may ultimately help us to devise new therapies for conditions that lead to abnormal RBC counts, such as hemolytic anemia, polycythemia vera, and acute blood loss, plus aid recovery from chemotherapy and bone marrow transplantation." Einstein has filed a joint patent application with Mount Sinai related to this research, which is currently available for licensing and further commercialization.

Previous studies, all done in the laboratory, had suggested that macrophages in the bone marrow act as nurse cells for erythroblasts, which are RBC precursors. But just how these "erythroblastic islands" (macrophages surrounded by erythroblasts) function in living animals was unclear.

A few years ago, Andrew Chow, a Mount Sinai M.D./Ph.D. student in the laboratories of Drs. Frenette, and Miriam Merad, M.D., Ph.D., professor of oncological sciences and immunology at Mount Sinai found that bone marrow macrophages express a cell surface molecule called sialoadhesin, or CD169 – a target that could be used for selectively eliminating macrophages from bone marrow. Doing so would help pinpoint the role of macrophages in erythroblastic islands in vivo.

That's what Drs. Frenette and Merad did in the current study involving mice. They found that selectively eliminating CD169-positive macrophages in mice reduces the number of bone marrow erythroblasts – evidence that these macrophages are indeed vital for the survival of erythroblasts, which develop into RBCs.

"What was surprising is that we couldn't see any significant anemia afterward," said Dr. Frenette. The researchers then analyzed the lifespan of the red blood cells and found that they were circulating for a longer time than usual.

"After we depleted the macrophages in the bone marrow, we discovered that we had also depleted CD169-positive macrophages present in the spleen and liver. It turns out that the macrophages in these two organs are quite important in removing old red blood cells from the peripheral circulation. Taken together, the findings show that these macrophages have a dual role, both producing and clearing red blood cells," he said.

The researchers also examined the role of macrophages in polycythemia vera, a genetic disease in which the bone marrow produces too many RBCs, typically leading to breathing difficulties, dizziness, excessive blood clotting and other symptoms. Using a mouse model of polycythemia vera, they found that depleting CD169-positive macrophages in bone marrow normalizes the RBC count. "This points to a new way to control polycythemia vera," said Dr. Frenette. "Right now, the standard of care is phlebotomy [periodic blood removal], which is cumbersome."

The title of the paper is “CD169+ macrophages provide a niche promoting erythropoiesis under homeostasis and stress.” The first author of the paper is Dr. Andrew Chow. Other co-authors of the study include Matthew Huggins, Daniel Lucas, Ph.D., Jalal Ahmed, B.S., Sandra Pinho, Ph.D., Yuya Kunisaki, M.D., Ph.D., and Aviv Bergman, Ph.D., of Einstein, and Daigo Hashimoto, M.D., Ph.D., Clara Noizat and Marylene Leboeuf of Mount Sinai, New York, NY. The study was done in collaboration with Nico van Rooijen at Vrije Universiteit, Amsterdam, The Netherlands; Masato Tanaka at RIKEN Research Center for Allergy and Immunology, Yokohama, Japan, and Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan; and Zhizhuang Joe Zhao, Ph.D., at University of Oklahoma Health Sciences Center, Oklahoma City, OK.

The study was supported by grants from the National Heart, Lung, and Blood Institute (R01 HL097700, R01HL069438, and R01HL116340); the National Institute of Diabetes and Digestive and Kidney Diseases (R01DK056638); and the National Cancer Institute (R01CA112100), all part of the National Institutes of Health.

Albert Einstein College of Medicine

Albert Einstein College of Medicine of Yeshiva University is one of the nation's premier centers for research, medical education and clinical investigation. In 2012, Einstein received over $160 million in awards from the NIH for major research centers at Einstein in diabetes, cancer, liver disease, and AIDS, as well as other areas. Through its affiliation with Montefiore Medical Center, the University Hospital for Einstein, and six other hospital systems, the College of Medicine runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit http://www.einstein.yu.edu and follow us on Twitter @EinsteinMed.

Kim Newman | EurekAlert!
Further information:
http://www.einstein.yu.edu

Further reports about: Einstein RBC blood cell bone marrow cell biology red blood cells

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Safe glide at total engine failure with ELA-inside

27.02.2017 | Information Technology

Fraunhofer IFAM expands its R&D work on Coatings for protection against corrosion and marine growth

27.02.2017 | Materials Sciences

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>