Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

White blood cell enzyme contributes to inflammation and obesity

03.04.2013
An imbalance between an enzyme called neutrophil elastase and its inhibitor causes inflammation, obesity, insulin resistance, and fatty liver in mice and humans -- providing a new therapeutic target for these health conditions

Many recent studies have suggested that obesity is associated with chronic inflammation in fat tissues. Researchers at Sanford-Burnham Medical Research Institute (Sanford-Burnham) have discovered that an imbalance between an enzyme called neutrophil elastase and its inhibitor causes inflammation, obesity, insulin resistance, and fatty liver disease.

This enzyme is produced by white blood cells called neutrophils, which play an important role in the body's immune defense against bacteria. The researchers found that obese humans and mice have increased neutrophil elastase activity and decreased levels of á1-antitrypsin, a protein that inhibits the elastase. When the team reversed this imbalance in a mouse model and fed them a high-fat diet, the mice were resistant to body weight gain, insulin resistance (a precursor to type 2 diabetes), and fatty liver disease. Their study appears April 2 in Cell Metabolism.

"The imbalance between neutrophil elastase and its inhibitor, á1-antitrypsin, is likely an important contributing factor in the development of obesity, inflammation, and other health problems. Shifting this balance—by either reducing one or increasing the other—could provide a new therapeutic approach to preventing and treating obesity and several obesity-related conditions," said Zhen Jiang, Ph.D., assistant professor in Sanford-Burnham's Diabetes and Obesity Research Center at Lake Nona, Orlando and senior author of the study.

What happens when you reduce neutrophil elastase levels

This study began when Jiang and his team noticed that neutrophil elastase levels are particularly high and á1-antitrypsin levels are low in a mouse model of obesity. Then they saw the same thing in blood samples from human male volunteers.

To further probe this curious neutrophil elastase-obesity relationship, the researcher turned once again to mouse models. They found that mice completely lacking the neutrophil elastase enzyme don't get as fat as normal mice, even when fed a high-fat diet. Those mice were also protected against inflammation, insulin resistance, and fatty liver. The same was true in a mouse model genetically modified to produce human á1-antitrypsin, which inhibits neutrophil elastase.

Normal mice on a high-fat diet were also protected against inflammation, insulin resistance, and fatty liver when they were given a chemical compound that inhibits neutrophil elastase. This finding helps validate the team's conclusions about neutrophil elastase's role in inflammation and metabolism and also suggests that a medicinal drug could someday be developed to target this enzyme.

Mechanism: how neutrophil elastase influences inflammation and metabolism

How do high neutrophil elastase levels increase inflammation and cause weight gain and other metabolic problems?

Jiang and his team began connecting the mechanistic dots. They discovered that neutrophil elastase-deficient mice have increased levels of several factors, including adiponectin, AMPK, and fatty acid oxidation. These are known for their roles in increasing energy expenditure, thus helping the body burn excess fat.

This research was funded by a Sanford-Burnham start-up fund, the American Diabetes Association (grant 7-11-BS-72), U.S. National Institutes of Health (National Institute of Diabetes and Digestive and Kidney Diseases grant R01DK094025), and U.K. Medical Research Council (grant U117512772).

The study was co-authored by Virginie Mansuy-Aubert, Sanford-Burnham; Qiong L. Zhou, Sanford-Burnham; Xiangyang Xie, Sanford-Burnham; Zhenwei Gong, Sanford-Burnham; Jun-Yuan Huang, Sanford-Burnham; Abdul R. Khan, Sanford-Burnham, National Institute for Biotechnology and Genetic Engineering, Pakistan; Gregory Aubert, Sanford-Burnham; Karla Candelaria, Sanford-Burnham; Shantele Thomas, Sanford-Burnham; Dong-Ju Shin, Sanford-Burnham; Sarah Booth, U.K. National Institute of Medical Research; Shahid M. Baig, National Institute for Biotechnology and Genetic Engineering, Pakistan; Ahmed Bilal, Allied Hospital, Punjab Medical College; Daehee Hwang, Institute for Systems Biology; Hui Zhang, Institute for Systems Biology, Johns Hopkins University; Robin Lovell-Badge, U.K. National Institute of Medical Research; Steven R. Smith, Sanford-Burnham, Translational Research Institute, Florida Hospital; Fazli R. Awan, National Institute for Biotechnology and Genetic Engineering, Pakistan; Zhen Y. Jiang, Sanford-Burnham

About Sanford-Burnham Medical Research Institute

Sanford-Burnham Medical Research Institute is dedicated to discovering the fundamental molecular causes of disease and devising the innovative therapies of tomorrow. Sanford-Burnham takes a collaborative approach to medical research with major programs in cancer, neurodegeneration, diabetes, and infectious, inflammatory, and childhood diseases. The Institute is recognized for its National Cancer Institute-designated Cancer Center and expertise in drug discovery technologies. Sanford-Burnham is a nonprofit, independent institute that employs 1,200 scientists and staff in San Diego (La Jolla), California and Orlando (Lake Nona), Florida. For more information, visit us at sanfordburnham.org.

Heather Buschman | EurekAlert!
Further information:
http://www.sanfordburnham.org

More articles from Life Sciences:

nachricht Charge Order and Electron Localization in a Molecule-Based Solid
22.01.2018 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Combination of Resistance Genes Offers Better Protection for Wheat against Powdery Mildew

22.01.2018 | Agricultural and Forestry Science

Two dimensional circuit with magnetic quasi-particles

22.01.2018 | Physics and Astronomy

Electrical fields drive nano-machines a 100,000 times faster than previous methods

22.01.2018 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>