Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Wet ethanol production process yields more ethanol and more co-products

Using a wet ethanol production method that begins by soaking corn kernels rather than grinding them, results in more gallons of ethanol and more usable co-products, giving ethanol producers a bigger bang for their buck – by about 20 percent.

"The conventional ethanol production method has fewer steps, but other than distillers dried grains with soluble, it doesn't have any other co-products," said University of Illinois Agricultural Engineer Esha Khullar.

"Whereas in both wet and dry fractionation processes, the result is ethanol, distillers dried grains with soluble, as well as germ and fiber. Corn fiber oil for example can be extracted from the fiber and used as heart-healthy additives in buttery spreads that can lower cholesterol."

In comparing the wet and dry fractionation methods, Khullar's research team found that when using the wet fractionation method, the result is even higher ethanol concentrations coming out of the fermenter and better quality co-products than the dry method.

In the wet process, the corn kernels are soaked, washing the germ, which Khullar says is a cleaner separation. "There's not a lot of starch sticking to the germ. That's why you get higher oil concentrations."

After the kernels are soaked they are ground to produce a slurry. The slurry is soaked with enzymes so that it raises the specific gravity to a point where the germ starts floating and can be fished out from the top.

Khullar explained that in the dry fractionation method, the kernel is crushed, flattening out the germ. "The germ is still attached to a certain part of the endosperm and you still have a few starch pieces sticking to it. You have a very high starch content germ from the dry fractionation and that lowers the oil content. That's why there's a big difference in the wet process versus the dry process."

Dry and wet fractionation methods have been developed to separate out the germ and pericarp fiber before fermentation which is more efficient because the germ and fiber are non-fermentable. "It's better to removed them before the process. That way you have more starch in the fermenter. And you don't have to heat them and bump them and cool them," Khullar said.

The process doesn't require developing any new equipment. "It's just a modification of things that are already being done in the corn processing industry and can be done pretty easily," Khullar said.

Ethanol Production from Modified and Conventional Dry-Grind Processes Using Different Corn Types was published in a 2009 issue of Cereal Chemistry. Funding was provided by the University of Illinois and Monsanto Company. The research team included Erik D. Sall, Kent D. Rausch, M.E. Tumbleson, and Vijay Singh.

Debra Levey Larson | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Don't Give the Slightest Chance to Toxic Elements in Medicinal Products
23.03.2018 | Physikalisch-Technische Bundesanstalt (PTB)

nachricht North and South Cooperation to Combat Tuberculosis
22.03.2018 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Space observation with radar to secure Germany's space infrastructure

Satellites in near-Earth orbit are at risk due to the steady increase in space debris. But their mission in the areas of telecommunications, navigation or weather forecasts is essential for society. Fraunhofer FHR therefore develops radar-based systems which allow the detection, tracking and cataloging of even the smallest particles of debris. Satellite operators who have access to our data are in a better position to plan evasive maneuvers and prevent destructive collisions. From April, 25-29 2018, Fraunhofer FHR and its partners will exhibit the complementary radar systems TIRA and GESTRA as well as the latest radar techniques for space observation across three stands at the ILA Berlin.

The "traffic situation" in space is very tense: the Earth is currently being orbited not only by countless satellites but also by a large volume of space...

Im Focus: Researchers Discover New Anti-Cancer Protein

An international team of researchers has discovered a new anti-cancer protein. The protein, called LHPP, prevents the uncontrolled proliferation of cancer cells in the liver. The researchers led by Prof. Michael N. Hall from the Biozentrum, University of Basel, report in “Nature” that LHPP can also serve as a biomarker for the diagnosis and prognosis of liver cancer.

The incidence of liver cancer, also known as hepatocellular carcinoma, is steadily increasing. In the last twenty years, the number of cases has almost doubled...

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

New solar solutions for sustainable buildings and cities

23.03.2018 | Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

Latest News

For graphite pellets, just add elbow grease

23.03.2018 | Materials Sciences

Unique communication strategy discovered in stem cell pathway controlling plant growth

23.03.2018 | Agricultural and Forestry Science

Sharpening the X-ray view of the nanocosm

23.03.2018 | Physics and Astronomy

Science & Research
Overview of more VideoLinks >>>