Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wet ethanol production process yields more ethanol and more co-products

11.11.2009
Using a wet ethanol production method that begins by soaking corn kernels rather than grinding them, results in more gallons of ethanol and more usable co-products, giving ethanol producers a bigger bang for their buck – by about 20 percent.

"The conventional ethanol production method has fewer steps, but other than distillers dried grains with soluble, it doesn't have any other co-products," said University of Illinois Agricultural Engineer Esha Khullar.

"Whereas in both wet and dry fractionation processes, the result is ethanol, distillers dried grains with soluble, as well as germ and fiber. Corn fiber oil for example can be extracted from the fiber and used as heart-healthy additives in buttery spreads that can lower cholesterol."

In comparing the wet and dry fractionation methods, Khullar's research team found that when using the wet fractionation method, the result is even higher ethanol concentrations coming out of the fermenter and better quality co-products than the dry method.

In the wet process, the corn kernels are soaked, washing the germ, which Khullar says is a cleaner separation. "There's not a lot of starch sticking to the germ. That's why you get higher oil concentrations."

After the kernels are soaked they are ground to produce a slurry. The slurry is soaked with enzymes so that it raises the specific gravity to a point where the germ starts floating and can be fished out from the top.

Khullar explained that in the dry fractionation method, the kernel is crushed, flattening out the germ. "The germ is still attached to a certain part of the endosperm and you still have a few starch pieces sticking to it. You have a very high starch content germ from the dry fractionation and that lowers the oil content. That's why there's a big difference in the wet process versus the dry process."

Dry and wet fractionation methods have been developed to separate out the germ and pericarp fiber before fermentation which is more efficient because the germ and fiber are non-fermentable. "It's better to removed them before the process. That way you have more starch in the fermenter. And you don't have to heat them and bump them and cool them," Khullar said.

The process doesn't require developing any new equipment. "It's just a modification of things that are already being done in the corn processing industry and can be done pretty easily," Khullar said.

Ethanol Production from Modified and Conventional Dry-Grind Processes Using Different Corn Types was published in a 2009 issue of Cereal Chemistry. Funding was provided by the University of Illinois and Monsanto Company. The research team included Erik D. Sall, Kent D. Rausch, M.E. Tumbleson, and Vijay Singh.

Debra Levey Larson | EurekAlert!
Further information:
http://www.illinois.edu

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>