Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayne State research team finds possible clue to progression of MS

01.08.2012
Wayne State University School of Medicine researchers, working with colleagues in Canada, have found that one or more substances produced by a type of immune cell in people with multiple sclerosis (MS) may play a role in the disease's progression. The finding could lead to new targeted therapies for MS treatment.

B cells, said Robert Lisak, M.D., professor of neurology at Wayne State and lead author of the study, are a subset of lymphocytes (a type of circulating white blood cell) that mature to become plasma cells and produce immunoglobulins, proteins that serve as antibodies. The B cells appear to have other functions, including helping to regulate other lymphocytes, particularly T cells, and helping maintain normal immune function when healthy.

In patients with MS, the B cells appear to attack the brain and spinal cord, possibly because there are substances produced in the nervous system and the meninges — the covering of the brain and spinal cord — that attract them. Once within the meninges or central nervous system, Lisak said, the activated B cells secrete one or more substances that do not seem to be immunoglobulins but that damage oligodendrocytes, the cells that produce a protective substance called myelin.

The B cells appear to be more active in patients with MS, which may explain why they produce these toxic substances and, in part, why they are attracted to the meninges and the nervous system.

The brain, for the most part, can be divided into gray and white areas. Neurons are located in the gray area, and the white parts are where neurons send their axons — similar to electrical cables carrying messages — to communicate with other neurons and bring messages from the brain to the muscles. The white parts of the brain are white because oligodendrocytes make myelin, a cholesterol-rich membrane that coats the axons. The myelin's function is to insulate the axons, akin to the plastic coating on an electrical cable. In addition, the myelin speeds communication along axons and makes that communication more reliable. When the myelin coating is attacked and degraded, impulses — messages from the brain to other parts of the body — can "leak" and be derailed from their target. Oligodendrocytes also seem to engage in other activities important to nerve cells and their axons.

The researchers took B cells from the blood of seven patients with relapsing-remitting MS and from four healthy patients. They grew the cells in a medium, and after removing the cells from the culture collected material produced by the cells. After adding the material produced by the B cells, including the cells that produce myelin, to the brain cells of animal models, the scientists found significantly more oligodendrocytes from the MS group died when compared to material produced by the B cells from the healthy control group. The team also found differences in other brain cells that interact with oligodendrocytes in the brain.

"We think this is a very significant finding, particularly for the damage to the cerebral cortex seen in patients with MS, because those areas seem to be damaged by material spreading into the brain from the meninges, which are rich in B cells adjacent to the areas of brain damage," Lisak said.

The team is now applying for grants from several sources to conduct further studies to identify the toxic factor or factors produced by B cells responsible for killing oligodendrocytes. Identification of the substance could lead to new therapeutic methods that could switch off the oligodendrocyte-killing capabilities of B cells, which, in turn, would help protect myelin from attacks.

The study, "Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro," was published in the May 2012 edition of the Journal of Neuroimmunology and was recently featured in a National Multiple Sclerosis Society bulletin. Other WSU researchers involved in the study include Joyce Benjamins, Ph.D., professor and associate chair of neurology; Samia Ragheba, Ph.D., assistant professor of neurology and immunology & microbiology; Liljana Nedelkoskaa, research assistant in neurology; and Jennifer Barger, research assistant in neurology; as well as researchers at the Montreal Neurological Institute and McGill University in Montreal. The research was supported by a National Multiple Sclerosis Society Collaborative MS Research Center Award, the Canadian Institutes of Health Research and the Multiple Sclerosis Society of Canada.

Wayne State University is one of the nation's pre-eminent public research institutions in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu

Julie O'Connor | EurekAlert!
Further information:
http://www.wayne.edu
http://www.research.wayne.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>