Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayne State research team finds possible clue to progression of MS

01.08.2012
Wayne State University School of Medicine researchers, working with colleagues in Canada, have found that one or more substances produced by a type of immune cell in people with multiple sclerosis (MS) may play a role in the disease's progression. The finding could lead to new targeted therapies for MS treatment.

B cells, said Robert Lisak, M.D., professor of neurology at Wayne State and lead author of the study, are a subset of lymphocytes (a type of circulating white blood cell) that mature to become plasma cells and produce immunoglobulins, proteins that serve as antibodies. The B cells appear to have other functions, including helping to regulate other lymphocytes, particularly T cells, and helping maintain normal immune function when healthy.

In patients with MS, the B cells appear to attack the brain and spinal cord, possibly because there are substances produced in the nervous system and the meninges — the covering of the brain and spinal cord — that attract them. Once within the meninges or central nervous system, Lisak said, the activated B cells secrete one or more substances that do not seem to be immunoglobulins but that damage oligodendrocytes, the cells that produce a protective substance called myelin.

The B cells appear to be more active in patients with MS, which may explain why they produce these toxic substances and, in part, why they are attracted to the meninges and the nervous system.

The brain, for the most part, can be divided into gray and white areas. Neurons are located in the gray area, and the white parts are where neurons send their axons — similar to electrical cables carrying messages — to communicate with other neurons and bring messages from the brain to the muscles. The white parts of the brain are white because oligodendrocytes make myelin, a cholesterol-rich membrane that coats the axons. The myelin's function is to insulate the axons, akin to the plastic coating on an electrical cable. In addition, the myelin speeds communication along axons and makes that communication more reliable. When the myelin coating is attacked and degraded, impulses — messages from the brain to other parts of the body — can "leak" and be derailed from their target. Oligodendrocytes also seem to engage in other activities important to nerve cells and their axons.

The researchers took B cells from the blood of seven patients with relapsing-remitting MS and from four healthy patients. They grew the cells in a medium, and after removing the cells from the culture collected material produced by the cells. After adding the material produced by the B cells, including the cells that produce myelin, to the brain cells of animal models, the scientists found significantly more oligodendrocytes from the MS group died when compared to material produced by the B cells from the healthy control group. The team also found differences in other brain cells that interact with oligodendrocytes in the brain.

"We think this is a very significant finding, particularly for the damage to the cerebral cortex seen in patients with MS, because those areas seem to be damaged by material spreading into the brain from the meninges, which are rich in B cells adjacent to the areas of brain damage," Lisak said.

The team is now applying for grants from several sources to conduct further studies to identify the toxic factor or factors produced by B cells responsible for killing oligodendrocytes. Identification of the substance could lead to new therapeutic methods that could switch off the oligodendrocyte-killing capabilities of B cells, which, in turn, would help protect myelin from attacks.

The study, "Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro," was published in the May 2012 edition of the Journal of Neuroimmunology and was recently featured in a National Multiple Sclerosis Society bulletin. Other WSU researchers involved in the study include Joyce Benjamins, Ph.D., professor and associate chair of neurology; Samia Ragheba, Ph.D., assistant professor of neurology and immunology & microbiology; Liljana Nedelkoskaa, research assistant in neurology; and Jennifer Barger, research assistant in neurology; as well as researchers at the Montreal Neurological Institute and McGill University in Montreal. The research was supported by a National Multiple Sclerosis Society Collaborative MS Research Center Award, the Canadian Institutes of Health Research and the Multiple Sclerosis Society of Canada.

Wayne State University is one of the nation's pre-eminent public research institutions in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu

Julie O'Connor | EurekAlert!
Further information:
http://www.wayne.edu
http://www.research.wayne.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>