Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wayne State research team finds possible clue to progression of MS

01.08.2012
Wayne State University School of Medicine researchers, working with colleagues in Canada, have found that one or more substances produced by a type of immune cell in people with multiple sclerosis (MS) may play a role in the disease's progression. The finding could lead to new targeted therapies for MS treatment.

B cells, said Robert Lisak, M.D., professor of neurology at Wayne State and lead author of the study, are a subset of lymphocytes (a type of circulating white blood cell) that mature to become plasma cells and produce immunoglobulins, proteins that serve as antibodies. The B cells appear to have other functions, including helping to regulate other lymphocytes, particularly T cells, and helping maintain normal immune function when healthy.

In patients with MS, the B cells appear to attack the brain and spinal cord, possibly because there are substances produced in the nervous system and the meninges — the covering of the brain and spinal cord — that attract them. Once within the meninges or central nervous system, Lisak said, the activated B cells secrete one or more substances that do not seem to be immunoglobulins but that damage oligodendrocytes, the cells that produce a protective substance called myelin.

The B cells appear to be more active in patients with MS, which may explain why they produce these toxic substances and, in part, why they are attracted to the meninges and the nervous system.

The brain, for the most part, can be divided into gray and white areas. Neurons are located in the gray area, and the white parts are where neurons send their axons — similar to electrical cables carrying messages — to communicate with other neurons and bring messages from the brain to the muscles. The white parts of the brain are white because oligodendrocytes make myelin, a cholesterol-rich membrane that coats the axons. The myelin's function is to insulate the axons, akin to the plastic coating on an electrical cable. In addition, the myelin speeds communication along axons and makes that communication more reliable. When the myelin coating is attacked and degraded, impulses — messages from the brain to other parts of the body — can "leak" and be derailed from their target. Oligodendrocytes also seem to engage in other activities important to nerve cells and their axons.

The researchers took B cells from the blood of seven patients with relapsing-remitting MS and from four healthy patients. They grew the cells in a medium, and after removing the cells from the culture collected material produced by the cells. After adding the material produced by the B cells, including the cells that produce myelin, to the brain cells of animal models, the scientists found significantly more oligodendrocytes from the MS group died when compared to material produced by the B cells from the healthy control group. The team also found differences in other brain cells that interact with oligodendrocytes in the brain.

"We think this is a very significant finding, particularly for the damage to the cerebral cortex seen in patients with MS, because those areas seem to be damaged by material spreading into the brain from the meninges, which are rich in B cells adjacent to the areas of brain damage," Lisak said.

The team is now applying for grants from several sources to conduct further studies to identify the toxic factor or factors produced by B cells responsible for killing oligodendrocytes. Identification of the substance could lead to new therapeutic methods that could switch off the oligodendrocyte-killing capabilities of B cells, which, in turn, would help protect myelin from attacks.

The study, "Secretory products of multiple sclerosis B cells are cytotoxic to oligodendroglia in vitro," was published in the May 2012 edition of the Journal of Neuroimmunology and was recently featured in a National Multiple Sclerosis Society bulletin. Other WSU researchers involved in the study include Joyce Benjamins, Ph.D., professor and associate chair of neurology; Samia Ragheba, Ph.D., assistant professor of neurology and immunology & microbiology; Liljana Nedelkoskaa, research assistant in neurology; and Jennifer Barger, research assistant in neurology; as well as researchers at the Montreal Neurological Institute and McGill University in Montreal. The research was supported by a National Multiple Sclerosis Society Collaborative MS Research Center Award, the Canadian Institutes of Health Research and the Multiple Sclerosis Society of Canada.

Wayne State University is one of the nation's pre-eminent public research institutions in an urban setting. Through its multidisciplinary approach to research and education, and its ongoing collaboration with government, industry and other institutions, the university seeks to enhance economic growth and improve the quality of life in the city of Detroit, state of Michigan and throughout the world. For more information about research at Wayne State University, visit http://www.research.wayne.edu

Julie O'Connor | EurekAlert!
Further information:
http://www.wayne.edu
http://www.research.wayne.edu

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>