Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water striders' jumping on water -- understood and imitated after careful observations

06.08.2015

Jumping is an antipredatory adaptation of many water strider species to avoid capture by predators that attack from under the water surface.

The Korean-Polish team of biologists, Piotr Jablonski, Sang-Im Lee and Jae Hak Son from the Laboratory of Behavioral Ecology and Evolution (Jablonski, Lee and Son) and the Institute of Advanced Machines and Design (Lee) at the Seoul National University have filmed jumping behavior of the largest water strider species in Korea, Aquarius paludum.


Figure 1. Comparison between the robot (A) and its inspiration - the real water strider (B) during jump. The insect and the robot are not at the same scale because the aim is to focus on similarities in the dimples on the water surface created by legs of the robot (A) and the insect (B).. Although the robots themselves do not faithfully imitate the look and morphology of the real water striders, the interactions between the robot legs and the-water surface correctly reproduce the principal mechanism used by jumping insects. Therefore, the robot performance is comparable to that of the real water striders. They are the first robots that are similar to the larger water strider species in terms of body mass and jump physics as well as jumping performance. The two photos are screenshots from the video clips from Koh et al. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 31 July 2015, vol 349 no.6247 pp. 517-521.

Credit: Koh et al. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 31 July 2015, vol 349 no.6247 pp. 517-521.

Slow-motion movies shot at 1000 fps, showed that the typical jump has two phases. Video of the water strider Aquarius paludum jumping on a solid substrate clearly shows these phases (see the uploaded media "Water strider A paludum jump on solid substrate.wmv").

In the initial phase midlegs mostly press vertically downwards against the water surface. As a result of these leg movements, the water surface is deflected creating a dimple in the initial phase. The dimple is created gradually because the leg speed downwards increases gradually rather than abruptly.

In the second phase the legs move rather horizontally, first mostly backwards and then mostly inward with a gradual switch between them. The dimple then moves across the water surface as the legs move backwards and then inward (see the uploaded media "Water strider A paludum jumps on water.wmv" ) during 20-30 milliseconds between the initial phase and the moment when the legs leave the water surface.

THEORETICAL UNDERSTANDING

Based on the insect morphology and the pattern of the leg movements, the team of theoretical engineers, Ho-Young Kim and Eun-Jin Yang from the Micro Fluid Mechanics Laboratory and the Institute of Advanced Machines and Design at the Seoul National University, created a mathematical model of surface tension forces that make the vertical jump possible (a type of model called "kinematic model"). They estimated a threshold value for the dimple depth below which the legs will break the water surface.

Then, they calculated the vertical body speed of a jumping insect resulting from the interactions between legs and water surface. At the heart of these calculations is the fact that each leg of an insect creates a dimple on the water surface (provided it does not break the surface), and that at each moment of time the water strider experiences the upward directed force (component of the surface tension force) from each dimple.

The final jumping speed is proportional to the sum of forces acting on all four legs (four dimples) at each moment of time for the duration of jump. This means that the adding of the forces occurs in space (four dimples) and time (along the duration of jump). The upward force at each dimple increases as the dimple depth (strictly speaking volume) increases.

But, breaking of the water surface by legs, which occurs after the threshold depth is reached, leads to a loss of the dimple and the upward force. Therefore, the model predicted that the speed-maximizing jumping behavior is to keep the dimple as deep as possible for as long as possible without breaking the surface of water. The theoretical analysis suggested that the water strider's leg movement pattern observed by biologists allows insects to achieve this optimal jumping performance without breaking the water surface (as explained in a video in reference 2).

BUILDING JUMPING ROBOTS

Inspired by the biological observations and the theoretical understanding, the team of engineers, Kyu-Jin Cho, Je-Sung Koh, Gwang-Pil Jang, and Sun-Pill Jung from the Biorobotics Laboratory and the Institute of Advanced Machines and Design at the Seoul National University, together with Robert J. Wood from the School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering at Harvard University, began to design miniature robots.

They created a computer model of jumping (a type of model called "dynamic model") helpful in designing a robot that correctly reproduces the physical principle used by water striders in jumping. The new robots correctly imitate the core characteristic of the insect leg movements: initial gradual increase of downward force against the water surface, which creates the water dimple without splashing and without breaking of the water surface, followed by inward movements of the legs on the surface, which causes a shift of the unbroken dimple across the water surface (see movies of robots in reference 1, 2 and 3).

Although the robots themselves do not faithfully imitate the look and morphology of the real water striders, the interactions between the robots' legs and the-water surface correctly reproduce the principal mechanism used by jumping insects. Therefore, the robots' performance is comparable to that of the real water striders. They are the first robots that are similar to the larger water strider species in terms of body mass and jump's physics as well as jumping performance.

The earlier "water strider robots" that jumped on water did not relay on surface tension, created splashes breaking the water surface, and were much larger than the real water striders (see example in reference 4). None of them was based on as careful observations and understanding of nature as are the robots created by Kyu-Jin Cho, Je-Sung Koh, Gwang-Pil Jang, Sun-Pill Jung and Robert Wood.

These robots open exciting new possibilities to test hypotheses about evolution as an optimizing process that creates biological adaptations to jump. For example, in the future one can probably be able to build mini robots that are very similar to the existing water strider species (for example in terms of leg length) and compare them to the robots that are unlike the existing water strider species. If evolution creates morphologies for the best performance then the robots most similar to the real water striders will show the best jumping performance.

###

REFERENCES:

Reference 1: Koh JS, Yang E, Jung GP, Jung SP, Son JH, Lee SI, Jablonski PG, Wood RJ, Kim HY, Cho KJ. 2015. Jumping on water: surface tension-dominated jumping of water striders and robotic insects. Science 31 July 2015, vol 349 no.6247 pp. 517-521. Link: http://www.sciencemag.org/content/349/6247/517.short

Reference 2: Arstechnica news: Cathleen O'Grady (UK), Jul 31, 2015. "The first machine that can jump on water. Engineers use biomimentics to trun water surface tension into a Launchpad" Link: http://arstechnica.com/science/2015/07/the-first-machine-that-can-jump-on-water/

Reference 3: You tube video: "Scientists create insect robots that walk on water". by CCTV News, published on Jul 30, 2015. Link: https://www.youtube.com/watch?v=puSdwpv-X0k

Reference 4: Levi Sharpe, posted July 31, 2015. "Insect-like robot can jump on water". By Popular Science. http://www.popsci.com/insect-robot-can-jump-water

Media Contact

Sangim Lee
sang_im@hotmail.com
020-103-521-1959

http://www.behecolpiotrsangim.org/index.php 

Sangim Lee | EurekAlert!

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>