Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water channels in the body help cells remain in balance

10.10.2011
Water channels exist not only in nature – microscopical water channels are also present in the cells of the body, where they ensure that water can be transported through the protective surface of the cell.

Scientists at the University of Gothenburg, Sweden, have discovered that one type of the body’s water channels can be modified such that it becomes more stable , which may be significant in the treatment of several diseases.

“It’s important to understand how the water channels, which are known as ‘aquaporins’, in the body work, since they control many of the processes in our cells and tissues. They also determine what is to be transported into and out of the cell, and they are thus highly significant in the development of new treatments for various diseases, such as eczema, cerebral oedema, obesity and cancer”, says Kristina Hedfalk of the Department of Chemistry at the University of Gothenburg.

Aquaporins are vital
There are 13 different types of aquaporins in the human body. One of these, AQP2, is found in the kidney where it is responsible for a large-volume recirculation of water from the primary urine every day. Without this, we would urinate nearly 10 litres every day. Another variant, AQP4, is found in the brain where it contributes to regulation of the osmotic pressure in the sensitive brain tissue. This regulation is particularly important in those who are affected by cerebral oedema, which is a life-threatening condition that can follow a blow to the head or a stroke.

The research group, which consists of Fredrik Öberg, Jennie Sjöhamn, Gerhard Fischer, Andreas Moberg, Anders Pedersen, Richard Neutze and Kristina Hedfalk, describes their studies of one of the most recently discovered aquaporins in an article in the scientific journal The Journal of Biological Chemistry. This aquaporin, AQP10, is preferentially found in the intestine, and is particularly interesting since it transports both water and sugar alcohols.

Carbohydrates stabilise the water channel
“AQP10 differs from other aquaporins by having a large carbohydrate structure of branched sugar molecules, somewhat similar to a tree, attached on its outer surface. This makes it significantly more stable. This may be because aquaporins in the intestine need to be particularly stable. What we have shown is that AQP10 retains its transport ability, even if the carbohydrate structure is removed.”

The article Glycosylation Increases the Thermostability of Human Aquaporin 10 Protein has been published in the September edition of The Journal of Biological Chemistry.

Link to the article:
http://www.jbc.org/content/286/36/31915.full?sid=5e4d47ac-176e-4e10-946b-8e1a9c02884e
Bibliographic data:
Journal:September 9, 2011 The Journal of Biological Chemistry, 286, 31915-31923.
Authors: Fredrik Öberg, Jennie Sjöhamn, Gerhard Fischer, Andreas Moberg, Anders Pedersen, Richard Neutze, Kristina Hedfalk

Title: Glycosylation Increases the Thermostability of Human Aquaporin 10 Protein

For more information, please contact: Kristina Hedfalk
Telephone: 
+46-31-786 3923
Email: kristina.hedfalk@chem.gu.se

Helena Aaberg | idw
Further information:
http://www.gu.se

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Individualized fiber components for the world market

23.06.2017 | Physics and Astronomy

How brains surrender to sleep

23.06.2017 | Life Sciences

Can we see monkeys from space? Emerging technologies to map biodiversity

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>