Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Warmer Climate Could Stifle Carbon Uptake by Trees

08.01.2010
Contrary to conventional belief, as the climate warms and growing seasons lengthen subalpine forests are likely to soak up less carbon dioxide, according to a new University of Colorado at Boulder study.

As a result, more of the greenhouse gas will be left to concentrate in the atmosphere.

"Our findings contradict studies of other ecosystems that conclude longer growing seasons actually increase plant carbon uptake," said Jia Hu, who conducted the research as a graduate student in CU-Boulder's ecology and evolutionary biology department in conjunction with the university's Cooperative Institute for Research in Environmental Sciences, or CIRES.

The study will be published in the February edition of the journal Global Change Biology.

Working with ecology and evolutionary biology professor and CIRES Fellow Russell Monson, Hu found that while smaller spring snowpack tended to advance the onset of spring and extend the growing season, it also reduced the amount of water available to forests later in the summer and fall. The water-stressed trees were then less effective in converting CO2 into biomass. Summer rains were unable to make up the difference, Hu said.

"Snow is much more effective than rain in delivering water to these forests," said Monson. "If a warmer climate brings more rain, this won't offset the carbon uptake potential being lost due to declining snowpacks."

Drier trees also are more susceptible to beetle infestations and wildfires, Monson said.

The researchers found that even as late in the season as September and October, 60 percent of the water in stems and needles collected from subalpine trees along Colorado's Front Range could be traced back to spring snowmelt. They were able to distinguish between spring snow and summer rain in plant matter by analyzing slight variations in hydrogen and oxygen atoms in the water molecules.

The results suggest subalpine trees like lodgepole pine, subalpine fir and Englemann spruce depend largely on snowmelt, not just at the beginning of the summer, but throughout the growing season, according to the researchers.

"As snowmelt in these high-elevation forests is predicted to decline, the rate of carbon uptake will likely follow suit," said Hu.

Subalpine forests currently make up an estimated 70 percent of the western United States' carbon sink, or storage area. Their geographic range includes much of the Rocky Mountains, Sierra Nevada and high-elevation areas of the Pacific Northwest.

Study co-authors included David Moore of King's College London and Sean Burns of the National Center for Atmospheric Research and CU-Boulder.

CIRES is a joint institute of CU-Boulder and the National Oceanic and Atmospheric Administration. For more information about CIRES visit cires.colorado.edu.

Contact

Jia Hu, 303-492-5796
Jia.Hu@colorado.edu
Russell Monson, 303-492-6319
Monsonr@colorado.edu
Morgan Heim, 303-492-6289
morgan.heim@cires.colorado.edu

Jia Hu | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Life Sciences:

nachricht Cancer diagnosis: no more needles?
25.05.2018 | Christian-Albrechts-Universität zu Kiel

nachricht Less is more? Gene switch for healthy aging found
25.05.2018 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Powerful IT security for the car of the future – research alliance develops new approaches

The more electronics steer, accelerate and brake cars, the more important it is to protect them against cyber-attacks. That is why 15 partners from industry and academia will work together over the next three years on new approaches to IT security in self-driving cars. The joint project goes by the name Security For Connected, Autonomous Cars (SecForCARs) and has funding of €7.2 million from the German Federal Ministry of Education and Research. Infineon is leading the project.

Vehicles already offer diverse communication interfaces and more and more automated functions, such as distance and lane-keeping assist systems. At the same...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

In focus: Climate adapted plants

25.05.2018 | Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

 
Latest News

In focus: Climate adapted plants

25.05.2018 | Event News

Flow probes from the 3D printer

25.05.2018 | Machine Engineering

Less is more? Gene switch for healthy aging found

25.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>