Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wallabies and Bats Harbor "Fossil" Genes from the Most Deadly Family of Human Viruses

05.07.2010
Research reveals potential reservoir species, new mechanism for how mammals acquire genes

Modern marsupials may be popular animals at the zoo and in children's books, but new findings by University at Buffalo biologists reveal that they harbor a "fossil" copy of a gene that codes for filoviruses, which cause Ebola and Marburg hemorrhagic fevers and are the most lethal viruses known to humans.

Published this week in the online journal BMC Evolutionary Biology, the paper ("Filoviruses are ancient and integrated into mammalian genomes") demonstrates for the first time that mammals have harbored filoviruses for at least tens of millions of years, in contrast to the existing estimate of a few thousand.

It suggests that these species, which maintain a filovirus infection without negative health consequences, could have selectively maintained these so-called "fossil" genes as a genetic defense.

The work has important implications for the development of potential human vaccines, as well as for the modeling of disease outbreaks and the discovery of emerging diseases, including new filoviruses.

"This paper identifies the first captured 'fossil' copies of filovirus-like genes in mammalian genomes," says Derek J. Taylor, PhD, associate professor of biological sciences in the UB College of Arts and Sciences and co-author. "Our results confirm for the first time that several groups of mammals, including groups such as marsupials that never colonized Africa, have had an association with filoviruses."

The UB co-authors say that if the rarely captured genes represent antiviral defenses or genomic scars from persistent infections, then the work opens up new possibilities for identifying reservoir species for filoviruses, which harbor the virus but remain asymptomatic.

"The reservoir for filovirus has remained a huge mystery," says Jeremy A. Bruenn, PhD, UB professor of biological sciences and co-author. "We need to identify it because once a filovirus hits humans, it can be deadly."

When the UB researchers studied samples from the fur of a wallaby at the Buffalo Zoo and a brown bat caught on the UB campus, they found that the genomes of both animals as well as some other small mammals contain "fossil" copies of the gene for these deadly viruses, and thus could be candidate reservoir species for them.

"Who knew that the bats in the attic as well as modern marsupials harbored fossil gene copies of the group of viruses that is most lethal to humans," asks Taylor.

The research also demonstrates a new mechanism by which different species of mammals can acquire genes, through non-retroviral integrated RNA viruses, which the UB scientists had previously identified in eukaryotes but was unknown in mammals.

The UB scientists note that it is well-known that RNA retroviruses, like HIV-AIDS, can be integrated into mammal genomes.

"But because filoviruses infect only the cytoplasm of cells and not the nucleus and because they have no means of making DNA copies that might be integrated into the genome -- as retroviruses do -- it was never thought gene transfer could occur between non-retroviral RNA viruses and hosts," says Bruenn. "This paper shows that it does and it may prove to be a far more general phenomenon than is currently known."

The research also reveals that existing estimates that filoviruses originated in mammals a few thousand years ago were way off the mark.

"Our findings demonstrate that filoviruses are, at a minimum, between 10 million and 24 million years old, and probably much older," says Taylor. "Instead of having evolved during the rise of agriculture, they more likely evolved during the rise of mammals."

In addition to Bruenn and Taylor, Robert W. Leach, scientific programmer at the Center for Computational Research in UB's New York State Center of Excellence in Bioinformatics and Life Sciences, is a co-author on the paper.

The authors are actively involved with the Molecular Recognition in Biological Systems and Bioinformatics strategic strength identified as part of the UB2020 strategic planning process.

The University at Buffalo is a premier research-intensive public university, a flagship institution in the State University of New York system and its largest and most comprehensive campus. UB's more than 28,000 students pursue their academic interests through more than 300 undergraduate, graduate and professional degree programs. Founded in 1846, the University at Buffalo is a member of the Association of American Universities.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Designer cells: artificial enzyme can activate a gene switch

22.05.2018 | Life Sciences

PR of MCC: Carbon removal from atmosphere unavoidable for 1.5 degree target

22.05.2018 | Earth Sciences

Achema 2018: New camera system monitors distillation and helps save energy

22.05.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>