Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Walk this way: Scientists and MBL physiology students describe how a motor protein 'steps out'

16.01.2012
Just like people, some proteins have characteristic ways of "walking," which (also like human gaits) are not so easy to describe.

But now scientists have discovered the unique "drunken sailor" gait of dynein, a protein that is critical for the function of every cell in the body and whose malfunction has been associated with neurodegenerative disorders such as Lou Gehrig's disease and Parkinson's disease.

The research, which was led by Samara Reck-Peterson of Harvard Medical School and partially conducted in the MBL Physiology Course, received advance online publication this week in the journal Nature Structural & Molecular Biology.

Found in all of our cells, dynein is one of three types of "motor proteins": tiny molecular machines that are constantly working to shuttle materials needed to keep cells alive, allow cells to move and divide, and talk to their neighbors. All three models of motor protein (dynein, myosin, and kinesin) are "two-footed" and use the energy from breaking chemical bonds to generate movement.

"The myosin and kinesin motors work by walking more or less like we do: one foot in front of the other in a straight line," says Reck-Peterson. "We have discovered that the third motor model, dynein, appears to be different. Its two feet are at times uncoordinated and often veer from side to side (think drunken sailor). This mode of walking makes the dynein motor unique and may allow it to navigate obstacles while performing its transport functions in cells. Interestingly, our data also suggest that the dynein motor becomes more coordinated when it is hauling something large, implying that the motor can become more efficient when necessary."

Although this discovery is but a "first step," deciphering the walking mechanism of dynein may one day shed light on the molecular basis of neurodegenerative disease, Reck-Peterson says.

Co-authors Elizabeth Villa of the Max Planck Institute of Biochemistry and David Wu of UCLA's Geffen School of Medicine were students in the 2007 MBL Physiology Course. There, they began writing custom software code to analyze molecular movement by "two-dimensional particle tracking," which was used in this research.

Reck-Peterson is also an alumna of the MBL Physiology Course as a student (1994) teaching assistant (1997, 1998, 2005) and instructor (2008). "The course has had a major impact on my scientific career," she says. "I would say it is the reason I am doing science today!"

Citation: Qiu W., Derr ND, Goodman BS, Villa E, Wu D, Shih W, and Reck-Peterson SL (2012) Dynein achieves processive motion using both stochastic and coordinated stepping. Nature Struct. & Mol. Biol. doi:10.1038/nsmb.2205.

The Marine Biological Laboratory (MBL) is dedicated to scientific discovery and improving the human condition through research and education in biology, biomedicine, and environmental science. Founded in 1888 in Woods Hole, Massachusetts, the MBL is an independent, nonprofit corporation.

Diana Kenney | EurekAlert!
Further information:
http://www.mbl.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>