Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses act like 'self-packing suitcases'

19.10.2012
Researchers at the University of Leeds have identified a crucial stage in the lifecycle of simple viruses like polio and the common cold that could open a new front in the war on viral disease.

The team are the first to observe at a single-molecule level how the genetic material (genome) that forms the core of a single-strand RNA virus particle packs itself into its outer shell of proteins. Lead researcher Professor Peter Stockley said their results overturn accepted thinking about the process and could open a chink in the armour of a wide range of viruses.

"If we can target this process, it could lead to a completely new class of anti-virals that would be less likely to create resistant viruses than existing drugs, which tend to target individual proteins," Professor Stockley said.

A number of important viruses like the common cold and polio have RNA (ribonucleic acid) instead of DNA as their genetic material. The observations reveal that the viruses' RNA initially has a much greater volume than the virus particles created after they are packed inside their protein shell.

"We realised that the RNA genome must have to be intricately folded to fit into the final container, just like when you pack to go on holiday and need to fold your clothes to fit into the space in your suitcase," said co-author Dr Roman Tuma from the University of Leeds' Faculty of Biological Sciences.

When the team added proteins to the viral RNA they saw an immediate collapse in its volume.

"It seems that viral RNAs have evolved a self-folding mechanism that makes closing the 'viral suitcase' very efficient. It's as though 'the suitcase and the clothes' work together to close the lid and protect the content," Dr Tuma said.

"The viral RNAs, and only the viral RNAs, can do this trick of folding up to fit as soon as they see the 'suitcase' coming. That's the important thing. If we can interfere in that process we've got a completely novel drug target in the lifecycle of viruses," Professor Stockley said.

"At the moment there are relatively few antiviral drugs and they tend to target enzymes that the virus encodes in its genome. The problem is that the drugs target one enzyme initially and, within the year, scientists are identifying strains that have become resistant. Individual proteins are extremely susceptible to this mutation. A fundamental process like the one we're looking at opens the possibility of targeting the collective behaviour of essential molecules, which could be much less susceptible to developing resistance," explained Professor Stockley.

The same phenomenon is seen in both bacterial and plant viruses. "While we have not proved it yet, I would put money on animal viruses showing the same mechanism too," Professor Stockley added.

The team used sophisticated instrumentation custom built at the University that allowed them to make the first ever single-molecule measurements of viral assembly. This allowed researchers to observe individual viral particles one at a time. "The specific collapse, which can only be seen in such assays, was totally unexpected and overturns the current thinking about assembly," Professor Stockley said.

The team also includes PhD student Alexander Borodavka, whose Wellcome Trust studentship funded the new research. They have recently secured a grant from the Biotechnology and Biological Sciences Research Council (BBSRC) to extend their research.

"We're now perfectly positioned to pursue questions about how this mechanism works in other viruses and we're already thinking about ways to start designing new antiviral drugs that would target this newly recognised feature of viral lifecycles," Professor Stockley said.

The research is published in the Proceedings of the National Academy of Sciences (PNAS).

Professor Peter Stockley | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>