Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virus rounds up enzymes, disarms plant

02.06.2014

University of Tokyo researchers have described how a plant-virus protein suppresses an important plant defense mechanism that remembers viral genetic information, providing a new target for developing the first-ever chemical against plant viruses that globally cause more than $60 billion of crop losses each year.

Invading viruses carry genetic material that hijacks the host cell's machinery, fooling it into producing proteins and new viruses. All cells from fungi to plants and mammals employ RNA silencing, a cellular process essential for the regulation of gene expression that also functions as an important defense mechanism.


This is a model depicting that plant virus proteins (TGBp1: blue) aggregate and inactivate double-stranded RNA (dsRNA) synthesizing protein complexes (yellow: SGS3/RDR6 bodies).

Credit: Shigetou Namba, The University of Tokyo

Through RNA silencing, plant cells recognize this viral genetic material, remember and copy it so that other cells in the organism can be warned and destroy the virus. Viruses are known to fight back with RNA silencing suppressors, proteins that inhibit this defense mechanism, but how they interfere with the recording of viral genetic information was unknown.

Now, a research team headed by Professor Shigetou Namba and Dr. Yukari Okano in the Graduate School of Agricultural and Life Sciences has shown for the first time that the plant virus protein TGBp1 disarms RNA silencing by causing two enzymes involved in producing copies of viral genetic information to aggregate as inactive clusters in cells surrounded by the virus protein.

The two enzymes are SGS3 and RDR6, which are involved in producing copies of viral genetic information as double-stranded RNA, an essential step in the plant defense process. The researchers demonstrated that TGBp1 interacted with and inhibited the functions of SGS3 and RDR6, and attached fluorescent markers to TGBp1 and SGS3 to show visually that SGS3, which is usually distributed throughout the cell, formed clusters surrounded by TGBp1.

These results suggest that TGBp1 causes the enzymes SGS3 and RDR6 to form clusters, impeding the formation of double-stranded RNA and inhibiting the recording of viral genetic information, thus reducing plant resistance to viral infection.

"We expected that recording viral genetic information would be the most important step in RNA silencing, because if you can't remember the virus, you can't warn the rest of the organism and stop it spreading," explains Professor Namba.

"This would also make it important for the virus to target, but no one had confirmed any viral RNA silencing suppressors targeting this step in plants. Now we are very excited to be the first to do so, and we expect that other plant viral proteins will be found to have similar functions. Recently other researchers have reported that some viruses infecting humans also have RNA silencing suppressors, so this research may also contribute to the development of medicines targeting those viruses."

###

Keywords: RNA silencing, RNA silencing suppressor, double-stranded RNA, plant virus, TGBp1, SGS3, RDR6, plantago asiatica mosaic virus

Article information

Yukari Okano, Hiroko Senshu, Masayoshi Hashimoto, Yutaro Neriya, Osamu Netsu, Nami Minato, Tetsuya Yoshida, Kensaku Maejima, Kenro Oshima, Ken Komatsu, Yasuyuki Yamaji and Shigetou Namba, "In planta recognition of a dsRNA synthesis protein complex by a potexviral RNA silencing suppressor" The Plant Cell 26 (5) May 2014. doi: 10.1105/tpc.113.120535

http://www.plantcell.org/content/early/2014/05/30/tpc.113.120535.abstract

Links

The University of Tokyo
http://www.u-tokyo.ac.jp/en/

Graduate School of Agricultural and Life Sciences
http://www.a.u-tokyo.ac.jp/english/

Laboratory of Plant Pathology
http://papilio.ab.a.u-tokyo.ac.jp/planpath/en/index-en.html

Contact information

Research contact:

Professor Shigetou Namba
Laboratory of Plant Pathology
Graduate School of Agricultural and Life Sciences
The University of Tokyo
1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657
Tel: +81 (0)3-5841-5053
Fax: +81 (0)3-5841-5054
Email: anamba@mail.ecc.u-tokyo.ac.jp

Press officer:

Yoko Takemoto
Public Relations Division
The University of Tokyo
7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654
Tel: +81 (0)3-5841-2031
Fax: +81 (0)3-3816-3913
Email: kouhoukikaku@ml.adm.u-tokyo.ac.jp

Yoko Takemoto | Eurek Alert!

Further reports about: Agricultural Pathology RNA Virus clusters copies enzymes silencing suppressor viruses

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>