Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech computer scientists develop new way to study molecular networks

25.01.2013
In biology, molecules can have multi-way interactions within cells, and until recently, computational analysis of these links has been "incomplete," according to T. M. Murali, associate professor of computer science in the College of Engineering at Virginia Tech.

His group authored an article on their new approach to address these shortcomings, titled "Reverse Engineering Molecular Hypergraphs," that received the Best Paper Award at the recent 2012 ACM Conference on Bioinformatics, Computational Biology and Biomedicine.

Intricate networks of connections among molecules control the processes that occur within cells. The "analysis of these interaction networks has relied almost entirely on graphs for modeling the information. Since a link in a graph connects at most two molecules (e.g., genes or proteins), such edges cannot accurately represent interactions among multiple molecules. These interactions occur very often within cells," the computer scientists wrote in their paper.

To overcome the limitations in the use of the graphs, Murali and his students used hypergraphs, a generalization of a graph in which an hyperedge can connect multiple molecules.

"We used hypergraphs to capture the uncertainty that is inherent in reverse engineering gene to gene networks from systems biology datasets," explained Ahsanur Rahman, the lead author on the paper. "We believe hypergraphs are powerful representations for capturing the uncertainty in a network's structure."

They developed reliable algorithms that can discover hyperedges supported by sets of networks. In ongoing research, the scientists seek to use hyperedges to suggest new experiments. By capturing uncertainty in network structure, hyperedges can directly suggest groups of genes for which further experiments may be required in order to precisely discover interaction patterns. Incorporating the data from these experiments might help to refine hyperedges and resolve the interactions among molecules, resulting in fruitful interplay and feedback between computation and experiment.

Murali, and his students Ahsanur Rahman and Christopher L. Poirel, both doctoral candidates, and David L. Badger, a software engineer in Murali's group, all of Blacksburg, Va., and all in the computer science department, used funding from the National Institutes of Health and the National Science Foundation to better understand this uncertainty in these various forms of interactions.

Murali is also the co-director of the Institute for Critical Technology and Applied Science's Center for Systems Biology of Engineered Tissues and the associate program director for the computational tissue engineering interdisciplinary graduate education program at Virginia Tech.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>