Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Virginia Tech computer scientists develop new way to study molecular networks

25.01.2013
In biology, molecules can have multi-way interactions within cells, and until recently, computational analysis of these links has been "incomplete," according to T. M. Murali, associate professor of computer science in the College of Engineering at Virginia Tech.

His group authored an article on their new approach to address these shortcomings, titled "Reverse Engineering Molecular Hypergraphs," that received the Best Paper Award at the recent 2012 ACM Conference on Bioinformatics, Computational Biology and Biomedicine.

Intricate networks of connections among molecules control the processes that occur within cells. The "analysis of these interaction networks has relied almost entirely on graphs for modeling the information. Since a link in a graph connects at most two molecules (e.g., genes or proteins), such edges cannot accurately represent interactions among multiple molecules. These interactions occur very often within cells," the computer scientists wrote in their paper.

To overcome the limitations in the use of the graphs, Murali and his students used hypergraphs, a generalization of a graph in which an hyperedge can connect multiple molecules.

"We used hypergraphs to capture the uncertainty that is inherent in reverse engineering gene to gene networks from systems biology datasets," explained Ahsanur Rahman, the lead author on the paper. "We believe hypergraphs are powerful representations for capturing the uncertainty in a network's structure."

They developed reliable algorithms that can discover hyperedges supported by sets of networks. In ongoing research, the scientists seek to use hyperedges to suggest new experiments. By capturing uncertainty in network structure, hyperedges can directly suggest groups of genes for which further experiments may be required in order to precisely discover interaction patterns. Incorporating the data from these experiments might help to refine hyperedges and resolve the interactions among molecules, resulting in fruitful interplay and feedback between computation and experiment.

Murali, and his students Ahsanur Rahman and Christopher L. Poirel, both doctoral candidates, and David L. Badger, a software engineer in Murali's group, all of Blacksburg, Va., and all in the computer science department, used funding from the National Institutes of Health and the National Science Foundation to better understand this uncertainty in these various forms of interactions.

Murali is also the co-director of the Institute for Critical Technology and Applied Science's Center for Systems Biology of Engineered Tissues and the associate program director for the computational tissue engineering interdisciplinary graduate education program at Virginia Tech.

Lynn Nystrom | EurekAlert!
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>