Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Going viral to kill zits

25.09.2012
UCLA/Pitt scientists uncover virus with potential to stop pimples in their tracks

Watch out, acne. Doctors soon may have a new weapon against zits: a harmless virus living on our skin that naturally seeks out and kills the bacteria that cause pimples.

The Sept. 25 online edition of the American Society for Microbiology's mBio publishes the findings by scientists at UCLA and the University of Pittsburgh.

"Acne affects millions of people, yet we have few treatments that are both safe and effective," said principal investigator Dr. Robert Modlin, chief of dermatology and professor of microbiology, immunology and molecular genetics at the David Geffen School of Medicine at UCLA. "Harnessing a virus that naturally preys on the bacteria that causes pimples could offer a promising new tool against the physical and emotional scars of severe acne."

The scientists looked at two little microbes that share a big name: Propionibacterium acnes, a bacterium thriving in our pores that can trigger acne; and P. acnes phages, a family of viruses that live on human skin. The viruses are harmless to humans, but programmed to infect and kill the aforementioned P. acnes bacteria.

When P. acnes bacteria aggravate the immune system, it causes the swollen, red bumps associated with acne. Most effective treatments work by reducing the number of P. acnes bacteria on the skin.

"We know that sex hormones, facial oil and the immune system play a role in causing acne, however, a lot of research implicates P. acnes as an important trigger," explained first author Laura Marinelli, a UCLA postdoctoral researcher in Modlin's laboratory. "Sometimes they set off an inflammatory response that contributes to the development of acne."

Using over-the-counter pore cleansing strips from the drugstore, the researchers lifted acne bacteria and the P. acnes viruses from the noses of both pimply and clear-skinned volunteers.

When the team sequenced the bacteriophages' genomes, they discovered that the viruses possess multiple features – such as small size, limited diversity and the broad ability to kill their hosts – that make them ideal candidates for the development of a new anti-acne therapy.

"Our findings provide valuable insights into acne and the bacterium that causes it," observed corresponding author Graham Hatfull, Eberly Family Professor of Biotechnology, professor of biological sciences at the University of Pittsburgh and a Howard Hughes Medical Institute researcher. "The lack of genetic diversity among the phages that attack the acne bacterium implies that viral-based strategies may help control this distressing skin disorder."

"Phages are programmed to target and kill specific bacteria, so P. acnes phages will attack only P. acnes bacteria, but not others like E. coli," added Marinelli. "This trait suggests that they offer strong potential for targeted therapeutic use."

Acne affects nearly 90 percent of Americans at some point in their lives, yet scientists know little about what causes the disorder and have made narrow progress in developing new strategies for treating it. Dermatologists' arsenal of anti-acne tools -- benzoyl peroxide, antibiotics and Accutane – hasn't expanded in decades.

"Antibiotics such as tetracycline are so widely used that many acne strains have developed resistance, and drugs like Accutane, while effective, can produce risky side effects, limiting their use," explained coauthor Dr. Jenny Kim, director of the UCLA Clinic for Acne, Rosacea and Aesthetics. "Acne can dramatically disfigure people and undermine their self-esteem, especially in teens. We can change patients' lives with treatment. It's time we identified a new way to safely treat the common disorder."

The research team plans to isolate the active protein from the P. acnes virus and test whether it is as effective as the whole virus in killing acne bacteria. If laboratory testing proves successful, the researchers will study the compound's safety and effectiveness in combating acne in people.

The study was supported by grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases (R21AR060382, R01 AR053542 and F32AR060655) at the National Institutes of Health in Bethesda, Md.

Additional coauthors included Sorel Fitz-Gibbon, Megan Inkeles, Shawn Cokus, Matteo Pellegrini and Jeffrey F. Miller, all of UCLA; former UCLA researchers Clarmyra Hayes and Anya Loncaric, now of the California Institute of Technology and Solta Medical, respectively; and Charles Bowman, Daniel Russell and Deborah Jacobs-Sera of the University of Pittsburgh.

The Clinic for Acne, Rosacea and Aesthetics at the UCLA Division of Dermatology at the David Geffen School of Medicine offers comprehensive care for acne and rosacea, as well as the scarring and discoloration that can result from these conditions. The clinic's goal is to educate the public and help patients develop habits leading to healthy skin. Current research projects include studying the effect of Vitamin-D on immune response to acne, the effect of Omega-3 fatty acids on acne and its treatment, and the use of a mobile device application for acne management. To schedule an appointment, call (310) 825-6911.

Elaine Schmidt | EurekAlert!
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Polymers Based on Boron?
18.01.2018 | Julius-Maximilians-Universität Würzburg

nachricht Bioengineered soft microfibers improve T-cell production
18.01.2018 | Columbia University School of Engineering and Applied Science

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Polymers Based on Boron?

18.01.2018 | Life Sciences

Bioengineered soft microfibers improve T-cell production

18.01.2018 | Life Sciences

World’s oldest known oxygen oasis discovered

18.01.2018 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>