Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vibrational Molecular Pathology

09.12.2013
IR and Raman spectral imaging can distinguish between tissue types, disease types and stages, and even identify the primary tumors from spectral patterns observed in metastatic cells. Furthermore, these techniques can be used in the detection of circulating tumor cells.

During the last 15 years, vibrational spectroscopic methods have been developed that can be viewed as molecular pathology methods that depend on sampling the entire genome, proteome and metabolome of cells and tissues, rather than probing for the presence of selected markers.



The main difference compared to established methods is that no morphological information and no staining reagents are required, since IR and Raman spectra solely rely on molecular and biochemical features that can be probed in a non-destructive way. Pixel by pixel, the inherent spectral signatures of the biochemical components of a tissue can be detected.

In a review article, a team of scientists from the Northeastern University in Boston (USA), the Institute of Photonic Technology in Jena, and the University Jena (Germany) give an overview on the present state of-the-art of “molecular pathology” provided by vibrational micro-spectroscopy. The authors introduce the methodological background and fundamentals and discuss results in the context of spectral histopathology.

Vibrational spectroscopy can be observed in both absorption (IR absorption spectroscopy) or in light scattering (Raman spectroscopy). Every molecule exhibits a distinct and specific fingerprint spectrum in each of the techniques that allows identification and quantitation of the molecular compound. For a complex sample, such as human cells or tissues, the observed IR or Raman spectra are a superposition of all the spectra of the individual biochemical components. Modern mathematical data analysis methods and computer algorithms are able to decode these complex spectral signatures so that the spectral methods are now poised to enter the mainstream diagnostic arena.

The authors report on a number of intriguing results, for example, how metastases could be identified in lymph nodes and brain tissue, and the primary tumor could be determined. Using the vibrational spectroscopy, the source of lymphocyte activation can be traced and different cancer types such as squamous cell carcinoma and adenocarcinoma can be distinguished without the use of morphological information. In addition, it enables the detection of early stage abnormalities of oral and cervical mucosa – useful for screening applications.

Extremely promising for the detection of circulating tumor cells is the fact that different cell types can be distinguished at the single cell level.
The authors also discuss what needs to be done to transfer the vibrational spectroscopic approaches into clinical diagnosis and give an outlook. For example, robust models based on retrospective studies are needed to improve diagnosis and prognosis for new cases; and Raman imaging data acquisition needs a further speed up. Dedicated Raman fiber optic probes for real-time, in vivo applications could even enable optical biopsies before and without surgery.

(Text contributed by K. Maedefessel-Herrmann)

See original publication: M. Diem, A. Mazur, K. Lenau, J. Schubert, B. Bird, M. Miljkoviæ, C. Krafft, and J. Popp; Molecular pathology via IR and Raman spectral imaging, J. Biophotonics 6(11-12), 855-886 (2013) http://onlinelibrary.wiley.com/doi/10.1002/jbio.201300131/abstract

For more information about the Journal of Biophotonics visit the journal homepage.

Regina Hagen
Journal Publishing Manager, Journal of Biophotonics
Managing Editor, Physical Sciences
Global Research
Wiley-VCH Verlag GmbH & Co. KGaA
Rotherstrasse 21
10245 Berlin
Germany
T +49 (0)30 47 031 321
F +49 (0)30 47 031 399
jbp@wiley.com

Regina Hagen | Wiley-VCH
Further information:
http://www.wiley.com
http://www.biophotonics-journal.org
http://www.wileyonlinelibrary.com

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>