Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viable and fertile fruit flies in the absence of histone H3.3

13.11.2012
Histones – proteins that package DNA – affect cell function differently than previously assumed: the cell doesn’t need the histone H3.3 to read genes. Molecular biologists from the University of Zurich demonstrate that fruit flies can develop and reproduce in the absence of this histone. Additionally, cell division works without a histone modification previously deemed crucial.

Histones are proteins that are found in the cell’s nucleus, where they are present in complexes with DNA and are presumed to play a regulatory role in all processes that take place on the DNA. These processes include transcription, namely RNA synthesis, and the duplication of DNA during cell division.


Drosophila wing imaginal disc: Non-stained cells, areas in black, can not modify their histone H3 at the lysin. But the cells can divide and read genes. Dark blue represents non-mutant cells, cyan represents the modification at the lysin.

Picture: UZH

Until now, the function of the individual histones in the various processes could only be determined indirectly. Molecular biologists Konrad Basler and Martina Hödl from the University of Zurich for the first time directly studied the function of two histones and one histone modification – with surprising results: Viable and fertile organisms develop in the absence of the histone known as H3.3. Additionally a particular histone modification was believed to be crucial for the activation of gene transcription.

However, the researchers were able to demonstrate that this is also not the case. The established models for the role and function of histones and their modifications during the transcription and cell-division need to be revised.

Fertile fruit flies despite lack of histone H3.3

For their study, Basler and his postdoctoral student Hödl used the fruit fly Drosophila melanogaster, the genome of which has been fully decoded. In an initial experiment, the scientists switched the two histone variants H3.2 and H3.3 in the cells. In normal (i.e. non-manipulated) cells, histone H3.2 is only expressed in one specific phase of the cell cycle, the so-called S phase. Histone H3.3, however, is always expressed. Consequently, it was assumed that histone H3.3 plays a key role in transcription, especially in reading genes. Thus, the general consensus was that RNA synthesis would be restricted in the absence of histone H3.3. “In our experiment, under lab conditions viable and fertile fruit flies could develop from cells that do not have any H3.3,” explains Hödl, summing up the result that turns the previous understanding on its head. “Organisms also begin to develop from cells without H3.2 but these died in the first larval stage,” Hödl continues.

Genes are switched on and off without histone modification

Histones are modified by different enzymes at different points in the protein. In a second experiment, Basler and Hödl examined the importance of modifications of the fourth amino acid of the protein, a lysine. Modification of this lysine is thought to play a key role in activating and deactivating the transcription of the gene. To test this, the scientists replaced the lysine with non-modifiable amino acids in all the histone H3 genes. The result was another big surprise. “Cells without this specific histone modification are able to divide normally,” explains Basler before adding: “However, they do so considerably more slowly than cells that have not been modified.” Therefore, the modification of this lysine is not essential for the activation of the genes.

The results show that the activation of genes and the inheritance of the ability to activate genes work differently than previously assumed. Clearly, the structure of the transcription process is extremely robust. According to Basler, the role of this common histone modification for cell function has been overestimated in recent years.

Literature:
Martina Hödl, Konrad Basler, Transcription in the Absence of Histone H3.2 and H3K4 Methylation. Current Biology. November 8, 2012. http://dx.doi.org/10.1016/j.cub.2012.10.008
Contact:
Dr. Martina Hödl
Institute of Molecular Life Sciences
University of Zurich
Tel. +41 44 635 31 15
E-Mail martina.hoedl@imls.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>