Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viable and fertile fruit flies in the absence of histone H3.3

13.11.2012
Histones – proteins that package DNA – affect cell function differently than previously assumed: the cell doesn’t need the histone H3.3 to read genes. Molecular biologists from the University of Zurich demonstrate that fruit flies can develop and reproduce in the absence of this histone. Additionally, cell division works without a histone modification previously deemed crucial.

Histones are proteins that are found in the cell’s nucleus, where they are present in complexes with DNA and are presumed to play a regulatory role in all processes that take place on the DNA. These processes include transcription, namely RNA synthesis, and the duplication of DNA during cell division.


Drosophila wing imaginal disc: Non-stained cells, areas in black, can not modify their histone H3 at the lysin. But the cells can divide and read genes. Dark blue represents non-mutant cells, cyan represents the modification at the lysin.

Picture: UZH

Until now, the function of the individual histones in the various processes could only be determined indirectly. Molecular biologists Konrad Basler and Martina Hödl from the University of Zurich for the first time directly studied the function of two histones and one histone modification – with surprising results: Viable and fertile organisms develop in the absence of the histone known as H3.3. Additionally a particular histone modification was believed to be crucial for the activation of gene transcription.

However, the researchers were able to demonstrate that this is also not the case. The established models for the role and function of histones and their modifications during the transcription and cell-division need to be revised.

Fertile fruit flies despite lack of histone H3.3

For their study, Basler and his postdoctoral student Hödl used the fruit fly Drosophila melanogaster, the genome of which has been fully decoded. In an initial experiment, the scientists switched the two histone variants H3.2 and H3.3 in the cells. In normal (i.e. non-manipulated) cells, histone H3.2 is only expressed in one specific phase of the cell cycle, the so-called S phase. Histone H3.3, however, is always expressed. Consequently, it was assumed that histone H3.3 plays a key role in transcription, especially in reading genes. Thus, the general consensus was that RNA synthesis would be restricted in the absence of histone H3.3. “In our experiment, under lab conditions viable and fertile fruit flies could develop from cells that do not have any H3.3,” explains Hödl, summing up the result that turns the previous understanding on its head. “Organisms also begin to develop from cells without H3.2 but these died in the first larval stage,” Hödl continues.

Genes are switched on and off without histone modification

Histones are modified by different enzymes at different points in the protein. In a second experiment, Basler and Hödl examined the importance of modifications of the fourth amino acid of the protein, a lysine. Modification of this lysine is thought to play a key role in activating and deactivating the transcription of the gene. To test this, the scientists replaced the lysine with non-modifiable amino acids in all the histone H3 genes. The result was another big surprise. “Cells without this specific histone modification are able to divide normally,” explains Basler before adding: “However, they do so considerably more slowly than cells that have not been modified.” Therefore, the modification of this lysine is not essential for the activation of the genes.

The results show that the activation of genes and the inheritance of the ability to activate genes work differently than previously assumed. Clearly, the structure of the transcription process is extremely robust. According to Basler, the role of this common histone modification for cell function has been overestimated in recent years.

Literature:
Martina Hödl, Konrad Basler, Transcription in the Absence of Histone H3.2 and H3K4 Methylation. Current Biology. November 8, 2012. http://dx.doi.org/10.1016/j.cub.2012.10.008
Contact:
Dr. Martina Hödl
Institute of Molecular Life Sciences
University of Zurich
Tel. +41 44 635 31 15
E-Mail martina.hoedl@imls.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>