Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in prostate stem cell antigen gene raises bladder cancer risk

04.08.2009
International study uncovers genetic link for dangerous cancer

Researchers have pinpointed a specific gene variation that causes increased risk of urinary bladder cancer, according to a scientific team led by The University of Texas M. D. Anderson Cancer Center.

These findings were reported today in the advance online publication of Nature Genetics, and determined that people with the variant had a 30 percent to 40 percent higher risk for bladder cancer. Scientists hope the results of this large, multi-site international study may help determine who is at high risk to contract this deadly cancer, which may lead to better survival rates and the development of chemopreventive interventions.

"With this research, we were able to find a novel specific gene and a functional variation that are independent of the previous suspects. We found a 'why' to many of the questions about genetic causes of bladder cancer," said Xifeng Wu, M.D., Ph.D., professor in M. D. Anderson's Department of Epidemiology, Division of Cancer Prevention and Population Sciences, the lead and corresponding author of this publication. "The neighboring genomic region has been identified previously as a possible problem for breast, prostate, colorectal and bladder cancer, but we didn't know why."

Genetic risk factors have been elusive

Bladder cancer is the fourth most common cancer in men in the United States. In this country, it is projected that more than 68,800 new cases will be diagnosed and approximately 14,400 people will die because of the disease this year.

Cigarette smoking and occupational exposure to certain chemicals are known risk factors, but almost one-third of people who get the disease have an inherited genetic susceptibility. People with first-degree relatives with bladder cancer have a 50 percent to 100 percent higher risk of getting the disease.

However, the exact genetic explanation for bladder cancer has remained elusive, and this study may have helped to solve some of the puzzles, Wu said.

Prostate stem cell antigen (PSCA) is over-expressed in prostate cancer, and the level of PSCA increases with tumor grade and stage. However, the cellular function of PSCA in prostate cancer is not clear.

While PSCA's involvement in bladder cancer had been suggested previously, this is the first time it has been linked definitively.

6,667 cases, 39,590 controls

The first step of this study was a genomewide evaluation of 969 people with bladder cancer and 954 healthy people. To validate their findings, researchers evaluated patients from three additional U.S. and nine European groups, for a total of 6,667 people with bladder cancer and 39,590 healthy people.

A variant in the PSCA gene (rs2294008) was associated consistently with bladder cancer. Researchers then re-examined the PSCA gene region and found rs2294008 was the only common missense genetic variation in the PSCA region. A missense mutation occurs at a single point in the genome and swaps one amino acid for another in a protein.

Low levels of PSCA were found in the bladders of healthy people, but it was over-produced in the majority of patients with bladder cancer. Previous reports suggest that measurement of PSCA in urine may be a simple and accurate marker to help diagnose bladder cancer.

Potential for chemoprevention, treatment

Next, the group plans to fully analyze data jointly with other participating centers, possibly uncovering additional genes for bladder cancer.

Wu said she hopes the group's findings will help targeted bladder cancer prevention efforts.

"When we've identified all the genes that are linked to bladder cancer, we plan to develop a web-based tool so physicians can calculate accurately and easily a patient's risk of getting the disease," she said. "Early identification of risk may help save lives with chemoprevention or early treatment."

In addition, Wu's team is working with a hospital in Spain to compare findings of the study to clinical outcomes. "How do these genes affect survival, recurrence and progression of bladder cancer?" she said. "As we get more information, we hope to be able to predict clinical outcomes and optimize therapy."

Other M. D. Anderson authors on the study included Yuanqing Ye, Ph.D., Jie Lin, Ph.D., David W. Chang, Ph.D., Christopher I. Amos, Ph.D., and Jian Gu, Ph.D., of the Department of Epidemiology; Colin P. Dinney, M.D., and H. Barton Grossman, M.D., of the Department of Urology; Bogdan Czerniak, M.D., Ph.D., and Tadeusz Majewski, M.D., Ph.D., of the Department of Pathology; and Gordon B. Mills, M.D., Ph.D., and Katherine S. Hale, Ph.D., of the Department of Systems Biology.

This study was supported by grants from the National Cancer Institute and funding from M. D. Anderson's Kleberg Center for Molecular Markers.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>