Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Variation in prostate stem cell antigen gene raises bladder cancer risk

04.08.2009
International study uncovers genetic link for dangerous cancer

Researchers have pinpointed a specific gene variation that causes increased risk of urinary bladder cancer, according to a scientific team led by The University of Texas M. D. Anderson Cancer Center.

These findings were reported today in the advance online publication of Nature Genetics, and determined that people with the variant had a 30 percent to 40 percent higher risk for bladder cancer. Scientists hope the results of this large, multi-site international study may help determine who is at high risk to contract this deadly cancer, which may lead to better survival rates and the development of chemopreventive interventions.

"With this research, we were able to find a novel specific gene and a functional variation that are independent of the previous suspects. We found a 'why' to many of the questions about genetic causes of bladder cancer," said Xifeng Wu, M.D., Ph.D., professor in M. D. Anderson's Department of Epidemiology, Division of Cancer Prevention and Population Sciences, the lead and corresponding author of this publication. "The neighboring genomic region has been identified previously as a possible problem for breast, prostate, colorectal and bladder cancer, but we didn't know why."

Genetic risk factors have been elusive

Bladder cancer is the fourth most common cancer in men in the United States. In this country, it is projected that more than 68,800 new cases will be diagnosed and approximately 14,400 people will die because of the disease this year.

Cigarette smoking and occupational exposure to certain chemicals are known risk factors, but almost one-third of people who get the disease have an inherited genetic susceptibility. People with first-degree relatives with bladder cancer have a 50 percent to 100 percent higher risk of getting the disease.

However, the exact genetic explanation for bladder cancer has remained elusive, and this study may have helped to solve some of the puzzles, Wu said.

Prostate stem cell antigen (PSCA) is over-expressed in prostate cancer, and the level of PSCA increases with tumor grade and stage. However, the cellular function of PSCA in prostate cancer is not clear.

While PSCA's involvement in bladder cancer had been suggested previously, this is the first time it has been linked definitively.

6,667 cases, 39,590 controls

The first step of this study was a genomewide evaluation of 969 people with bladder cancer and 954 healthy people. To validate their findings, researchers evaluated patients from three additional U.S. and nine European groups, for a total of 6,667 people with bladder cancer and 39,590 healthy people.

A variant in the PSCA gene (rs2294008) was associated consistently with bladder cancer. Researchers then re-examined the PSCA gene region and found rs2294008 was the only common missense genetic variation in the PSCA region. A missense mutation occurs at a single point in the genome and swaps one amino acid for another in a protein.

Low levels of PSCA were found in the bladders of healthy people, but it was over-produced in the majority of patients with bladder cancer. Previous reports suggest that measurement of PSCA in urine may be a simple and accurate marker to help diagnose bladder cancer.

Potential for chemoprevention, treatment

Next, the group plans to fully analyze data jointly with other participating centers, possibly uncovering additional genes for bladder cancer.

Wu said she hopes the group's findings will help targeted bladder cancer prevention efforts.

"When we've identified all the genes that are linked to bladder cancer, we plan to develop a web-based tool so physicians can calculate accurately and easily a patient's risk of getting the disease," she said. "Early identification of risk may help save lives with chemoprevention or early treatment."

In addition, Wu's team is working with a hospital in Spain to compare findings of the study to clinical outcomes. "How do these genes affect survival, recurrence and progression of bladder cancer?" she said. "As we get more information, we hope to be able to predict clinical outcomes and optimize therapy."

Other M. D. Anderson authors on the study included Yuanqing Ye, Ph.D., Jie Lin, Ph.D., David W. Chang, Ph.D., Christopher I. Amos, Ph.D., and Jian Gu, Ph.D., of the Department of Epidemiology; Colin P. Dinney, M.D., and H. Barton Grossman, M.D., of the Department of Urology; Bogdan Czerniak, M.D., Ph.D., and Tadeusz Majewski, M.D., Ph.D., of the Department of Pathology; and Gordon B. Mills, M.D., Ph.D., and Katherine S. Hale, Ph.D., of the Department of Systems Biology.

This study was supported by grants from the National Cancer Institute and funding from M. D. Anderson's Kleberg Center for Molecular Markers.

About M. D. Anderson

The University of Texas M. D. Anderson Cancer Center in Houston ranks as one of the world's most respected centers focused on cancer patient care, research, education and prevention. M. D. Anderson is one of only 40 comprehensive cancer centers designated by the National Cancer Institute. For four of the past six years, including 2008, M. D. Anderson has ranked No. 1 in cancer care in "America's Best Hospitals," a survey published annually in U.S. News & World Report.

Scott Merville | EurekAlert!
Further information:
http://www.mdanderson.org

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>