Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt scientists contribute to finding that could lead to the first effective RSV vaccine

07.02.2014
Vanderbilt University scientists have contributed to a major finding, reported today in the journal Nature, which could lead to the first effective vaccine against respiratory syncytial virus (RSV), a significant cause of infant mortality.

The Vanderbilt scientists and others analyzed in an animal model a new method developed at The Scripps Research Institute (TSRI) in La Jolla, Calif., for designing artificial proteins capable of stimulating an immune response against RSV.

The virus, which worldwide causes nearly 7 percent of all deaths among children ages 1 month to 1 year and is the leading cause of hospitalizations among children under 2, has been notoriously resistant to vaccine-design strategies.

"This project is the first work in which a protein that was designed on a computer has been shown to work as a vaccine candidate for a human pathogen," said Vanderbilt's James Crowe, M.D., Ann Scott Carell Professor and a leading RSV researcher.

"We believe this will be one of the principal ways that vaccines are designed and made in the future," said Crowe, also professor of Pediatrics and Pathology, Microbiology and Immunology.

TSRI scientists, led by senior author William Schief, Ph.D., used a "rational design" approach that focused on specific binding areas (epitopes) on the virus.

Virtually all existing viral vaccines use whole (killed or weakened) virus particles or entire viral proteins to stimulate antibody reactions. These vaccines display virtually the same large set of viral epitopes that the immune system would encounter during a natural infection. Yet some viruses, including RSV, conceal their vulnerable epitopes.

Scientists can sift through blood samples of virus-exposed patients to find the rare, "broadly neutralizing" antibodies that hit those vulnerable epitopes. They also know how to map the precise atomic structures of these antibodies and their corresponding epitopes using X-ray crystallography.

"What we haven't been able to do is to take that information about broadly neutralizing antibodies and their epitopes and translate it into effective, epitope-focused vaccines," lead author Bruno Correia, Ph.D., a member of the Schief laboratory at the time of the study, said in a news release.

The TSRI scientists developed a new software app, "Fold from Loops," to design proteins that folded around their functional fragments more naturally in a way that mimicked the viral epitope and which could serve as a key component of an effective vaccine.

In rhesus macaque monkeys, whose immune systems are quite similar to humans,' the designer "immunogen" proteins showed great promise. After five immunizations, 12 of 16 monkeys were producing robust amounts of antibodies that could neutralize RSV in the lab dish.

Analyses of the animals' immune responses were performed in the laboratories of Philip Johnson, M.D., at Children's Hospital in Philadelphia, and by Crowe and postdoctoral fellow John T. Bates, Ph.D., in the Vanderbilt Vaccine Center, which Crowe directs.

Former Vanderbilt faculty member Barney Graham, M.D., Ph.D., chief of the Viral Pathogenesis Laboratory at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, also participated in the analyses.

Having proven the principle of epitope-specific design, Schief and his colleagues now hope to produce a working RSV vaccine. "We're also trying to improve this protein design method further and apply it to other vaccine projects, including HIV and influenza vaccines," he said in a news release.

Craig Boerner | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Fish Oil-Diet Benefits May be Mediated by Gut Microbes
28.08.2015 | University of Gothenburg

nachricht Bio-fabrication of Artificial Blood Vessels with Laser Light
28.08.2015 | Fraunhofer-Institut für Lasertechnik ILT

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

Im Focus: Self-healing landscape: landslides after earthquake

In mountainous regions earthquakes often cause strong landslides, which can be exacerbated by heavy rain. However, after an initial increase, the frequency of these mass wasting events, often enormous and dangerous, declines, in fact independently of meteorological events and aftershocks.

These new findings are presented by a German-Franco-Japanese team of geoscientists in the current issue of the journal Geology, under the lead of the GFZ...

Im Focus: FIC Proteins Send Bacteria Into Hibernation

Bacteria do not cease to amaze us with their survival strategies. A research team from the University of Basel's Biozentrum has now discovered how bacteria enter a sleep mode using a so-called FIC toxin. In the current issue of “Cell Reports”, the scientists describe the mechanism of action and also explain why their discovery provides new insights into the evolution of pathogens.

For many poisons there are antidotes which neutralize their toxic effect. Toxin-antitoxin systems in bacteria work in a similar manner: As long as a cell...

Im Focus: Fraunhofer IPA develops prototype of intelligent care cart

It comes when called, bringing care utensils with it and recording how they are used: Fraunhofer IPA is developing an intelligent care cart that provides care staff with physical and informational support in their day-to-day work. The scientists at Fraunhofer IPA have now completed a first prototype. In doing so, they are continuing in their efforts to improve working conditions in the care sector and are developing solutions designed to address the challenges of demographic change.

Technical assistance systems can improve the difficult working conditions in residential nursing homes and hospitals by helping the staff in their work and...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Interstellar seeds could create oases of life

28.08.2015 | Physics and Astronomy

An ounce of prevention: Research advances on 'scourge' of transplant wards

28.08.2015 | Health and Medicine

Fish Oil-Diet Benefits May be Mediated by Gut Microbes

28.08.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>