Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt scientists contribute to finding that could lead to the first effective RSV vaccine

07.02.2014
Vanderbilt University scientists have contributed to a major finding, reported today in the journal Nature, which could lead to the first effective vaccine against respiratory syncytial virus (RSV), a significant cause of infant mortality.

The Vanderbilt scientists and others analyzed in an animal model a new method developed at The Scripps Research Institute (TSRI) in La Jolla, Calif., for designing artificial proteins capable of stimulating an immune response against RSV.

The virus, which worldwide causes nearly 7 percent of all deaths among children ages 1 month to 1 year and is the leading cause of hospitalizations among children under 2, has been notoriously resistant to vaccine-design strategies.

"This project is the first work in which a protein that was designed on a computer has been shown to work as a vaccine candidate for a human pathogen," said Vanderbilt's James Crowe, M.D., Ann Scott Carell Professor and a leading RSV researcher.

"We believe this will be one of the principal ways that vaccines are designed and made in the future," said Crowe, also professor of Pediatrics and Pathology, Microbiology and Immunology.

TSRI scientists, led by senior author William Schief, Ph.D., used a "rational design" approach that focused on specific binding areas (epitopes) on the virus.

Virtually all existing viral vaccines use whole (killed or weakened) virus particles or entire viral proteins to stimulate antibody reactions. These vaccines display virtually the same large set of viral epitopes that the immune system would encounter during a natural infection. Yet some viruses, including RSV, conceal their vulnerable epitopes.

Scientists can sift through blood samples of virus-exposed patients to find the rare, "broadly neutralizing" antibodies that hit those vulnerable epitopes. They also know how to map the precise atomic structures of these antibodies and their corresponding epitopes using X-ray crystallography.

"What we haven't been able to do is to take that information about broadly neutralizing antibodies and their epitopes and translate it into effective, epitope-focused vaccines," lead author Bruno Correia, Ph.D., a member of the Schief laboratory at the time of the study, said in a news release.

The TSRI scientists developed a new software app, "Fold from Loops," to design proteins that folded around their functional fragments more naturally in a way that mimicked the viral epitope and which could serve as a key component of an effective vaccine.

In rhesus macaque monkeys, whose immune systems are quite similar to humans,' the designer "immunogen" proteins showed great promise. After five immunizations, 12 of 16 monkeys were producing robust amounts of antibodies that could neutralize RSV in the lab dish.

Analyses of the animals' immune responses were performed in the laboratories of Philip Johnson, M.D., at Children's Hospital in Philadelphia, and by Crowe and postdoctoral fellow John T. Bates, Ph.D., in the Vanderbilt Vaccine Center, which Crowe directs.

Former Vanderbilt faculty member Barney Graham, M.D., Ph.D., chief of the Viral Pathogenesis Laboratory at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, also participated in the analyses.

Having proven the principle of epitope-specific design, Schief and his colleagues now hope to produce a working RSV vaccine. "We're also trying to improve this protein design method further and apply it to other vaccine projects, including HIV and influenza vaccines," he said in a news release.

Craig Boerner | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Hunting pathogens at full force
22.03.2017 | Helmholtz-Zentrum für Infektionsforschung

nachricht A 155 carat diamond with 92 mm diameter
22.03.2017 | Universität Augsburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>