Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Vanderbilt scientists contribute to finding that could lead to the first effective RSV vaccine

07.02.2014
Vanderbilt University scientists have contributed to a major finding, reported today in the journal Nature, which could lead to the first effective vaccine against respiratory syncytial virus (RSV), a significant cause of infant mortality.

The Vanderbilt scientists and others analyzed in an animal model a new method developed at The Scripps Research Institute (TSRI) in La Jolla, Calif., for designing artificial proteins capable of stimulating an immune response against RSV.

The virus, which worldwide causes nearly 7 percent of all deaths among children ages 1 month to 1 year and is the leading cause of hospitalizations among children under 2, has been notoriously resistant to vaccine-design strategies.

"This project is the first work in which a protein that was designed on a computer has been shown to work as a vaccine candidate for a human pathogen," said Vanderbilt's James Crowe, M.D., Ann Scott Carell Professor and a leading RSV researcher.

"We believe this will be one of the principal ways that vaccines are designed and made in the future," said Crowe, also professor of Pediatrics and Pathology, Microbiology and Immunology.

TSRI scientists, led by senior author William Schief, Ph.D., used a "rational design" approach that focused on specific binding areas (epitopes) on the virus.

Virtually all existing viral vaccines use whole (killed or weakened) virus particles or entire viral proteins to stimulate antibody reactions. These vaccines display virtually the same large set of viral epitopes that the immune system would encounter during a natural infection. Yet some viruses, including RSV, conceal their vulnerable epitopes.

Scientists can sift through blood samples of virus-exposed patients to find the rare, "broadly neutralizing" antibodies that hit those vulnerable epitopes. They also know how to map the precise atomic structures of these antibodies and their corresponding epitopes using X-ray crystallography.

"What we haven't been able to do is to take that information about broadly neutralizing antibodies and their epitopes and translate it into effective, epitope-focused vaccines," lead author Bruno Correia, Ph.D., a member of the Schief laboratory at the time of the study, said in a news release.

The TSRI scientists developed a new software app, "Fold from Loops," to design proteins that folded around their functional fragments more naturally in a way that mimicked the viral epitope and which could serve as a key component of an effective vaccine.

In rhesus macaque monkeys, whose immune systems are quite similar to humans,' the designer "immunogen" proteins showed great promise. After five immunizations, 12 of 16 monkeys were producing robust amounts of antibodies that could neutralize RSV in the lab dish.

Analyses of the animals' immune responses were performed in the laboratories of Philip Johnson, M.D., at Children's Hospital in Philadelphia, and by Crowe and postdoctoral fellow John T. Bates, Ph.D., in the Vanderbilt Vaccine Center, which Crowe directs.

Former Vanderbilt faculty member Barney Graham, M.D., Ph.D., chief of the Viral Pathogenesis Laboratory at the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health, also participated in the analyses.

Having proven the principle of epitope-specific design, Schief and his colleagues now hope to produce a working RSV vaccine. "We're also trying to improve this protein design method further and apply it to other vaccine projects, including HIV and influenza vaccines," he said in a news release.

Craig Boerner | Vanderbilt University
Further information:
http://www.vanderbilt.edu

More articles from Life Sciences:

nachricht Immune Defense Without Collateral Damage
23.01.2017 | Universität Basel

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Tracking movement of immune cells identifies key first steps in inflammatory arthritis

23.01.2017 | Health and Medicine

Electrocatalysis can advance green transition

23.01.2017 | Physics and Astronomy

New technology for mass-production of complex molded composite components

23.01.2017 | Process Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>