Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find protein that might be key to cutting cancer cells' blood supply

12.05.2011
UT Southwestern Medical Center researchers have discovered a protein that guides blood vessel development and eventually might lead to a treatment to keep cancer cells from spreading.

The researchers showed in mice that the Ras interacting protein 1 (Rasip1) is so specific and central to so many cellular processes that without it new blood vessels simply cannot form, said Dr. Ondine Cleaver, assistant professor of molecular biology at UT Southwestern and senior author of the study in the April issue of Developmental Cell.

"What we've found is really the first factor that is important in all blood vessels for inner channel formation and tubulogenesis, i.e., the transformation of something that looks like a rope into something that looks like a garden hose," Dr. Cleaver said.

Cancer cells depend on the body's creation of new blood vessels to deliver the nutrients that fuel cancer's rapid growth. Cancerous tumors also use the circulatory system as a superhighway through which they send malignant cells to colonize other parts of the body. A Rasip1-blocking drug conceivably could fight cancer on two fronts: by starving the cancerous cells and by cutting off their transport routes, Dr. Cleaver said.

During fetal development the body creates many tube-shaped organs such as the intestines of the digestive system and the vessels of the cardiovascular system. The mechanisms by which blood vessel progenitor cells transform into tubes that can carry blood are only beginning to be understood, she said.

Scientists have found many regulatory molecules important in different tissues and even in other aspects of blood vessel formation or maintenance, but all of them are active in multiple body tissues. Rasip1 is the first blood vessel-specific regulator of molecular switches called GTPases, she said. The protein appears to be active only in the endothelium, the layer of cells that line the blood vessels, and is not found in the smooth muscle cells that make up the outside of the vessels.

The UT Southwestern scientists also discovered that Rasip1 and a protein binding partner are both required for blood vessels to form channels through which blood can flow, she said.

Most approaches to therapies aimed at blocking blood vessel formation have focused on growth factors that occur outside the cell rather than intrinsic cellular growth factors like Rasip1, Dr. Cleaver said.

"Although this is still a mouse study, we feel that future studies of Rasip1 and the molecular processes under its control hold great promise to provide tools and models for advancing clinical therapies aimed at blocking vessel formation in tumors," she said.

The researchers now plan to look for drugs that block Rasip1 in order to eventually develop strategies to stop the growth of functional blood vessels and starve cancerous tumors, she said.

Other UT Southwestern researchers involved in the study were lead author and doctoral candidate Ke Xu; Stephen Fu, research technician II; Diana Chong, former research associate; Brian Skaug, a student in the Medical Scientist Training Program; and Dr. Zhijian "James" Chen, professor of molecular biology and a Howard Hughes Medical Institute investigator. Researchers from the University of Missouri and the Dalton Cardiovascular Research Center also participated.

The study was funded by the National Institutes of Health, the American Heart Association and the March of Dimes.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at http://www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Deborah Wormser | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>