Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find protein breakdown contributes to pelvic organ prolapse

24.05.2011
A gynecologist and a molecular biologist at UT Southwestern Medical Center have collaborated to show for the first time that pelvic organ prolapse – a condition in which the uterus, bladder or vagina protrude from the body – is caused by a combination of a loss of elasticity and a breakdown of proteins in the vaginal wall.

Pelvic organ prolapse affects many women older than 50 years of age. Besides creating pelvic pressure, prolapse can lead to other pelvic-floor disorders such as urinary and fecal incontinence, and can affect sexual function.

"We found that the protein fibulin-5, which until now simply has been known to be important in generating elastic fibers, actually blocks the enzymes that degrade proteins that support the vaginal wall structure," said Dr. R. Ann Word, professor of obstetrics and gynecology and a co-senior author of the study in May edition of the Journal of Clinical Investigation. "The elastic fibers do play a role, but it's also the enzymes that degrade the matrix that break down both collagen and elastin over time."

More than 225,000 inpatient surgical procedures for pelvic organ prolapse are performed each year in the U.S. at an estimated cost of more than $1 billion. But surgery alone is not always effective in the long run; nearly 30 percent of women report continued problems over a five-year follow-up period because the underlying problem of matrix support has not been corrected. There are no current therapies to prevent the progression of prolapse.

Age and vaginal delivery are the two most common risk factors for prolapse; injury to the vaginal wall may occur during childbirth but prolapse often doesn't occur until decades later. Obesity and menopause are also contributing factors.

"We still don't understand why patient A has a terrible delivery, with a large baby, but she never gets prolapse. And then we see patients who are 28 with no children, and they're already starting to have problems. So we know genetic and environmental factors contribute to this," Dr. Word said.

Using mice, researchers tested how fibulin-5, a protein that is essential for elastic fiber assembly, regulated the activity of matrix metalloprotease-9 (MMP-9), a group of enzymes that break down the matrix of collagen and elastic fibers, leading to a loss of the structural support of the vaginal wall.

Researchers used a fibulin-5 deficient rodent model and a new domain-specific mutant of fibulin-5 to demonstrate that fibulin-5-mediated elastogenesis (development of elastic fibers) is essential to support the pelvic organs. They also showed that prolapse of the vaginal wall requires an increase in MMP-9, but that fibulin-5 inhibits activation of this protease in a tissue-specific manner.

"Matrix assembly of the vaginal wall is a very complicated process," said Dr. Hiromi Yanagisawa, assistant professor of molecular biology and the study's other co-senior author. "We need to decode what is necessary in this process, but degrading enzymes are the main therapeutic focus."

Dr. Word said, "The bottom line is the whole matrix is maintained by a balance between synthesis and degradation. Our goal is to optimize pelvic organ support and target these proteases that degrade the matrix."

Other UT Southwestern researchers involved in the study were Dr. Madhusudhan Budatha, postdoctoral researcher of molecular biology and lead author; Dr. Quin Zheng, former postdoctoral researcher of molecular biology; Dr. Shayzreen Roshanravan and Dr. Cecilia Weislander, former postdoctoral researchers of obstetrics and gynecology; and Shelby Chapman, senior research associate of molecular biology. Scientists from UT Health Center in Tyler and McGill University in Montreal also participated.

The study was supported by grants from the National Institutes of Health, the American Heart Association and the Welch Foundation.

Visit http://www.utsouthwestern.org/obgyn to learn more about clinical services for obstetrics and gynecology at UT Southwestern.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>