Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT Southwestern researchers find protein breakdown contributes to pelvic organ prolapse

A gynecologist and a molecular biologist at UT Southwestern Medical Center have collaborated to show for the first time that pelvic organ prolapse – a condition in which the uterus, bladder or vagina protrude from the body – is caused by a combination of a loss of elasticity and a breakdown of proteins in the vaginal wall.

Pelvic organ prolapse affects many women older than 50 years of age. Besides creating pelvic pressure, prolapse can lead to other pelvic-floor disorders such as urinary and fecal incontinence, and can affect sexual function.

"We found that the protein fibulin-5, which until now simply has been known to be important in generating elastic fibers, actually blocks the enzymes that degrade proteins that support the vaginal wall structure," said Dr. R. Ann Word, professor of obstetrics and gynecology and a co-senior author of the study in May edition of the Journal of Clinical Investigation. "The elastic fibers do play a role, but it's also the enzymes that degrade the matrix that break down both collagen and elastin over time."

More than 225,000 inpatient surgical procedures for pelvic organ prolapse are performed each year in the U.S. at an estimated cost of more than $1 billion. But surgery alone is not always effective in the long run; nearly 30 percent of women report continued problems over a five-year follow-up period because the underlying problem of matrix support has not been corrected. There are no current therapies to prevent the progression of prolapse.

Age and vaginal delivery are the two most common risk factors for prolapse; injury to the vaginal wall may occur during childbirth but prolapse often doesn't occur until decades later. Obesity and menopause are also contributing factors.

"We still don't understand why patient A has a terrible delivery, with a large baby, but she never gets prolapse. And then we see patients who are 28 with no children, and they're already starting to have problems. So we know genetic and environmental factors contribute to this," Dr. Word said.

Using mice, researchers tested how fibulin-5, a protein that is essential for elastic fiber assembly, regulated the activity of matrix metalloprotease-9 (MMP-9), a group of enzymes that break down the matrix of collagen and elastic fibers, leading to a loss of the structural support of the vaginal wall.

Researchers used a fibulin-5 deficient rodent model and a new domain-specific mutant of fibulin-5 to demonstrate that fibulin-5-mediated elastogenesis (development of elastic fibers) is essential to support the pelvic organs. They also showed that prolapse of the vaginal wall requires an increase in MMP-9, but that fibulin-5 inhibits activation of this protease in a tissue-specific manner.

"Matrix assembly of the vaginal wall is a very complicated process," said Dr. Hiromi Yanagisawa, assistant professor of molecular biology and the study's other co-senior author. "We need to decode what is necessary in this process, but degrading enzymes are the main therapeutic focus."

Dr. Word said, "The bottom line is the whole matrix is maintained by a balance between synthesis and degradation. Our goal is to optimize pelvic organ support and target these proteases that degrade the matrix."

Other UT Southwestern researchers involved in the study were Dr. Madhusudhan Budatha, postdoctoral researcher of molecular biology and lead author; Dr. Quin Zheng, former postdoctoral researcher of molecular biology; Dr. Shayzreen Roshanravan and Dr. Cecilia Weislander, former postdoctoral researchers of obstetrics and gynecology; and Shelby Chapman, senior research associate of molecular biology. Scientists from UT Health Center in Tyler and McGill University in Montreal also participated.

The study was supported by grants from the National Institutes of Health, the American Heart Association and the Welch Foundation.

Visit to learn more about clinical services for obstetrics and gynecology at UT Southwestern.

This news release is available on our World Wide Web home page at

To automatically receive news releases from UT Southwestern via email, subscribe at

Robin Russell | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>