Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern researchers find protein breakdown contributes to pelvic organ prolapse

24.05.2011
A gynecologist and a molecular biologist at UT Southwestern Medical Center have collaborated to show for the first time that pelvic organ prolapse – a condition in which the uterus, bladder or vagina protrude from the body – is caused by a combination of a loss of elasticity and a breakdown of proteins in the vaginal wall.

Pelvic organ prolapse affects many women older than 50 years of age. Besides creating pelvic pressure, prolapse can lead to other pelvic-floor disorders such as urinary and fecal incontinence, and can affect sexual function.

"We found that the protein fibulin-5, which until now simply has been known to be important in generating elastic fibers, actually blocks the enzymes that degrade proteins that support the vaginal wall structure," said Dr. R. Ann Word, professor of obstetrics and gynecology and a co-senior author of the study in May edition of the Journal of Clinical Investigation. "The elastic fibers do play a role, but it's also the enzymes that degrade the matrix that break down both collagen and elastin over time."

More than 225,000 inpatient surgical procedures for pelvic organ prolapse are performed each year in the U.S. at an estimated cost of more than $1 billion. But surgery alone is not always effective in the long run; nearly 30 percent of women report continued problems over a five-year follow-up period because the underlying problem of matrix support has not been corrected. There are no current therapies to prevent the progression of prolapse.

Age and vaginal delivery are the two most common risk factors for prolapse; injury to the vaginal wall may occur during childbirth but prolapse often doesn't occur until decades later. Obesity and menopause are also contributing factors.

"We still don't understand why patient A has a terrible delivery, with a large baby, but she never gets prolapse. And then we see patients who are 28 with no children, and they're already starting to have problems. So we know genetic and environmental factors contribute to this," Dr. Word said.

Using mice, researchers tested how fibulin-5, a protein that is essential for elastic fiber assembly, regulated the activity of matrix metalloprotease-9 (MMP-9), a group of enzymes that break down the matrix of collagen and elastic fibers, leading to a loss of the structural support of the vaginal wall.

Researchers used a fibulin-5 deficient rodent model and a new domain-specific mutant of fibulin-5 to demonstrate that fibulin-5-mediated elastogenesis (development of elastic fibers) is essential to support the pelvic organs. They also showed that prolapse of the vaginal wall requires an increase in MMP-9, but that fibulin-5 inhibits activation of this protease in a tissue-specific manner.

"Matrix assembly of the vaginal wall is a very complicated process," said Dr. Hiromi Yanagisawa, assistant professor of molecular biology and the study's other co-senior author. "We need to decode what is necessary in this process, but degrading enzymes are the main therapeutic focus."

Dr. Word said, "The bottom line is the whole matrix is maintained by a balance between synthesis and degradation. Our goal is to optimize pelvic organ support and target these proteases that degrade the matrix."

Other UT Southwestern researchers involved in the study were Dr. Madhusudhan Budatha, postdoctoral researcher of molecular biology and lead author; Dr. Quin Zheng, former postdoctoral researcher of molecular biology; Dr. Shayzreen Roshanravan and Dr. Cecilia Weislander, former postdoctoral researchers of obstetrics and gynecology; and Shelby Chapman, senior research associate of molecular biology. Scientists from UT Health Center in Tyler and McGill University in Montreal also participated.

The study was supported by grants from the National Institutes of Health, the American Heart Association and the Welch Foundation.

Visit http://www.utsouthwestern.org/obgyn to learn more about clinical services for obstetrics and gynecology at UT Southwestern.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Robin Russell | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

nachricht Seeking structure with metagenome sequences
20.01.2017 | DOE/Joint Genome Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>