Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern research reveals that significantly more genetic mutations lead to colon cancer

18.07.2011
Researchers at UT Southwestern Medical Center say there are at least 70 genetic mutations involved in the formation of colon cancer, far more than scientists previously thought.

Based on the study, published in the July 2011 Cancer Research (Priority Reports), researchers are suggesting a new approach to colon cancer treatments targeting multiple genes and pathways simultaneously. Current cancer treatments target just one or two known cancer-driver genes believing this would be beneficial to patients. While patients may get transient tumor burden reduction, almost universally tumor growth returns.

The UT Southwestern research contradicts previous thinking that only a few mutated genes are important in the development of cancerous tumors.

"The ways we've been treating patients up to now is to just go after one target when we should be going after three to four different pathways simultaneously," said Dr. Jerry W. Shay, vice chairman and professor of cell biology at UT Southwestern.

Under the old model, scientists believed there were 151 candidate genes and that mutations in just eight to 15 of them would lead to cancer. There were 700 other genes classified as passenger genes whose mutations were incidental to cancer growth.

"Those numbers are dead wrong," Dr. Shay said. According to UT Southwestern's research, there are 65 candidate genes and at least five passenger genes whose mutations play significant roles in cancer development. Inactivating the function of any of these tumor-suppressing genes led to a key step in cancer development called anchorage-independent growth, meaning cells piled up on top of each other rather than aligning neatly.

The next step is further research to classify more accurately which genes drive cancer and which are merely passengers.

UT Southwestern's study was selected by the Faculty of 1000 – an international group of leading scientists and researchers – to be in its top 2 percent of published articles in biology and medicine.

Other UT Southwestern researchers involved in the study were lead author Ugur Eskiocak, student research assistant in cell biology; Dr. Sang Bum Kim, postdoctoral researcher in cell biology; Peter Ly, student research assistant in cell biology; Dr. Andres Roig, assistant professor of internal medicine; Dr. Sebastian Biglione, a former postdoctoral fellow in cell biology; Crystal Cornelius, research assistant in cell biology; Dr. Woodring Wright, professor of cell biology and internal medicine; and Dr. Michael White, professor of cell biology.

One researcher from UT M.D. Anderson Cancer Center also participated. The study was supported by grants from NASA and the Cancer Prevention and Research Institute of Texas.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>