Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT Southwestern research reveals that significantly more genetic mutations lead to colon cancer

18.07.2011
Researchers at UT Southwestern Medical Center say there are at least 70 genetic mutations involved in the formation of colon cancer, far more than scientists previously thought.

Based on the study, published in the July 2011 Cancer Research (Priority Reports), researchers are suggesting a new approach to colon cancer treatments targeting multiple genes and pathways simultaneously. Current cancer treatments target just one or two known cancer-driver genes believing this would be beneficial to patients. While patients may get transient tumor burden reduction, almost universally tumor growth returns.

The UT Southwestern research contradicts previous thinking that only a few mutated genes are important in the development of cancerous tumors.

"The ways we've been treating patients up to now is to just go after one target when we should be going after three to four different pathways simultaneously," said Dr. Jerry W. Shay, vice chairman and professor of cell biology at UT Southwestern.

Under the old model, scientists believed there were 151 candidate genes and that mutations in just eight to 15 of them would lead to cancer. There were 700 other genes classified as passenger genes whose mutations were incidental to cancer growth.

"Those numbers are dead wrong," Dr. Shay said. According to UT Southwestern's research, there are 65 candidate genes and at least five passenger genes whose mutations play significant roles in cancer development. Inactivating the function of any of these tumor-suppressing genes led to a key step in cancer development called anchorage-independent growth, meaning cells piled up on top of each other rather than aligning neatly.

The next step is further research to classify more accurately which genes drive cancer and which are merely passengers.

UT Southwestern's study was selected by the Faculty of 1000 – an international group of leading scientists and researchers – to be in its top 2 percent of published articles in biology and medicine.

Other UT Southwestern researchers involved in the study were lead author Ugur Eskiocak, student research assistant in cell biology; Dr. Sang Bum Kim, postdoctoral researcher in cell biology; Peter Ly, student research assistant in cell biology; Dr. Andres Roig, assistant professor of internal medicine; Dr. Sebastian Biglione, a former postdoctoral fellow in cell biology; Crystal Cornelius, research assistant in cell biology; Dr. Woodring Wright, professor of cell biology and internal medicine; and Dr. Michael White, professor of cell biology.

One researcher from UT M.D. Anderson Cancer Center also participated. The study was supported by grants from NASA and the Cancer Prevention and Research Institute of Texas.

Visit www.utsouthwestern.org/cancer to learn more about UT Southwestern's clinical services in cancer.

This news release is available on our World Wide Web home page at www.utsouthwestern.edu/home/news/index.html

To automatically receive news releases from UT Southwestern via email, subscribe at www.utsouthwestern.edu/receivenews

Debbie Bolles | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>