Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


UT scientists discover link between protein and lung disease

In a development that could lead to a novel approach to the treatment of a devastating lung disease, biochemists at The University of Texas Health Science Center at Houston report they are the first to link the osteopontin (OPN) protein to chronic obstructive pulmonary disease (COPD). Findings appear online and will be in the January 2010 print issue of The FASEB Journal, the journal of The Federation of American Societies for Experimental Biology.

More than 12 million Americans are currently diagnosed with this incurable illness, which is the fourth leading cause of death, the National Heart Lung and Blood Institute reports. In the United States, the term COPD includes two main conditions - emphysema and chronic obstructive bronchitis.

The researchers were able to prevent COPD features in a mouse model by genetically removing osteopontin. To gauge the applicability of their findings to humans, the investigators analyzed the airways of people with COPD and found elevated levels of the protein.

"This is an important crossover study," said Michael Blackburn, Ph.D., the study's senior author and professor in the Department of Biochemistry and Molecular Biology at The University of Texas Medical School at Houston. "Because we can show osteopontin is elevated in people with COPD, this suggests that osteopontin could serve as both an indicator of disease progression and a therapeutic target."

In the study, researchers induced COPD features in mice and then compared symptoms experienced by mice with osteopontin and those without. The mice without the protein had less inflammation and lung disease. "The lack of osteopontin in the mice prevented the COPD features," said Daniel Schneider, the study's lead author and an M.D./Ph.D. candidate at the UT Health Science Center at Houston.

"This paper reveals exciting new information on the pathogenetic mechanisms involved in the development of chronic obstructive pulmonary disease and emphysema," said Richard J. Castriotta, M.D., professor and director of the Pulmonary, Critical Care and Sleep Medicine Division at the UT Medical School at Houston and medical director of the Sleep Disorder Center at Memorial Hermann - Texas Medical Center.

The study stems from research in Blackburn's laboratory involving a signaling molecule named adenosine, which can orchestrate the process of inflammation in wound healing. Adenosine can also activate a cell surface receptor associated with COPD named A2B and produce osteopontin.

Blackburn's decade-long research has focused on blocking the A2B receptor. With the new study linking osteopontin to COPD, Blackburn believes his laboratory may have uncovered a protein that could lead to a more targeted approach to treating emphysema.

"As a physician scientist, one goal of drug development is to offer more specific drug targets to treat the disorder and osteopontin provides a specific target that may be associated with fewer side effects," Schneider said.

"This paper adds a new element, osteopontin, to the mix by discovering its significant role in the development of COPD with emphysema ... It's still too early to be used clinically, but there may be a place for osteopontin in the future as an indicator of lung disease in progress that leads to COPD and emphysema," Castriotta said.

Blackburn is director of the Graduate Program in Biochemistry and Molecular Biology at the UT Medical School.

Schneider is a graduate research assistant at The University of Texas Graduate School of Biomedical Sciences at Houston and is a recipient of a T32 training grant by the Center for Clinical and Translational Sciences at the UT Health Science Center at Houston.

The study is titled "Adenosine and osteopontin contribute to the development of chronic obstructive pulmonary disease." Other contributors from the Department of Biochemistry and Molecular Biology were graduate students Janci C. Lindsay and Yang Zhou, as well as senior research assistant Jose G. Molina.

The study was funded by the National Institutes of Health and the National Center for Research Resources.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>