Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT scientists discover link between protein and lung disease

17.09.2009
In a development that could lead to a novel approach to the treatment of a devastating lung disease, biochemists at The University of Texas Health Science Center at Houston report they are the first to link the osteopontin (OPN) protein to chronic obstructive pulmonary disease (COPD). Findings appear online and will be in the January 2010 print issue of The FASEB Journal, the journal of The Federation of American Societies for Experimental Biology.

More than 12 million Americans are currently diagnosed with this incurable illness, which is the fourth leading cause of death, the National Heart Lung and Blood Institute reports. In the United States, the term COPD includes two main conditions - emphysema and chronic obstructive bronchitis.

The researchers were able to prevent COPD features in a mouse model by genetically removing osteopontin. To gauge the applicability of their findings to humans, the investigators analyzed the airways of people with COPD and found elevated levels of the protein.

"This is an important crossover study," said Michael Blackburn, Ph.D., the study's senior author and professor in the Department of Biochemistry and Molecular Biology at The University of Texas Medical School at Houston. "Because we can show osteopontin is elevated in people with COPD, this suggests that osteopontin could serve as both an indicator of disease progression and a therapeutic target."

In the study, researchers induced COPD features in mice and then compared symptoms experienced by mice with osteopontin and those without. The mice without the protein had less inflammation and lung disease. "The lack of osteopontin in the mice prevented the COPD features," said Daniel Schneider, the study's lead author and an M.D./Ph.D. candidate at the UT Health Science Center at Houston.

"This paper reveals exciting new information on the pathogenetic mechanisms involved in the development of chronic obstructive pulmonary disease and emphysema," said Richard J. Castriotta, M.D., professor and director of the Pulmonary, Critical Care and Sleep Medicine Division at the UT Medical School at Houston and medical director of the Sleep Disorder Center at Memorial Hermann - Texas Medical Center.

The study stems from research in Blackburn's laboratory involving a signaling molecule named adenosine, which can orchestrate the process of inflammation in wound healing. Adenosine can also activate a cell surface receptor associated with COPD named A2B and produce osteopontin.

Blackburn's decade-long research has focused on blocking the A2B receptor. With the new study linking osteopontin to COPD, Blackburn believes his laboratory may have uncovered a protein that could lead to a more targeted approach to treating emphysema.

"As a physician scientist, one goal of drug development is to offer more specific drug targets to treat the disorder and osteopontin provides a specific target that may be associated with fewer side effects," Schneider said.

"This paper adds a new element, osteopontin, to the mix by discovering its significant role in the development of COPD with emphysema ... It's still too early to be used clinically, but there may be a place for osteopontin in the future as an indicator of lung disease in progress that leads to COPD and emphysema," Castriotta said.

Blackburn is director of the Graduate Program in Biochemistry and Molecular Biology at the UT Medical School.

Schneider is a graduate research assistant at The University of Texas Graduate School of Biomedical Sciences at Houston and is a recipient of a T32 training grant by the Center for Clinical and Translational Sciences at the UT Health Science Center at Houston.

The study is titled "Adenosine and osteopontin contribute to the development of chronic obstructive pulmonary disease." Other contributors from the Department of Biochemistry and Molecular Biology were graduate students Janci C. Lindsay and Yang Zhou, as well as senior research assistant Jose G. Molina.

The study was funded by the National Institutes of Health and the National Center for Research Resources.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>