Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT scientists discover link between protein and lung disease

17.09.2009
In a development that could lead to a novel approach to the treatment of a devastating lung disease, biochemists at The University of Texas Health Science Center at Houston report they are the first to link the osteopontin (OPN) protein to chronic obstructive pulmonary disease (COPD). Findings appear online and will be in the January 2010 print issue of The FASEB Journal, the journal of The Federation of American Societies for Experimental Biology.

More than 12 million Americans are currently diagnosed with this incurable illness, which is the fourth leading cause of death, the National Heart Lung and Blood Institute reports. In the United States, the term COPD includes two main conditions - emphysema and chronic obstructive bronchitis.

The researchers were able to prevent COPD features in a mouse model by genetically removing osteopontin. To gauge the applicability of their findings to humans, the investigators analyzed the airways of people with COPD and found elevated levels of the protein.

"This is an important crossover study," said Michael Blackburn, Ph.D., the study's senior author and professor in the Department of Biochemistry and Molecular Biology at The University of Texas Medical School at Houston. "Because we can show osteopontin is elevated in people with COPD, this suggests that osteopontin could serve as both an indicator of disease progression and a therapeutic target."

In the study, researchers induced COPD features in mice and then compared symptoms experienced by mice with osteopontin and those without. The mice without the protein had less inflammation and lung disease. "The lack of osteopontin in the mice prevented the COPD features," said Daniel Schneider, the study's lead author and an M.D./Ph.D. candidate at the UT Health Science Center at Houston.

"This paper reveals exciting new information on the pathogenetic mechanisms involved in the development of chronic obstructive pulmonary disease and emphysema," said Richard J. Castriotta, M.D., professor and director of the Pulmonary, Critical Care and Sleep Medicine Division at the UT Medical School at Houston and medical director of the Sleep Disorder Center at Memorial Hermann - Texas Medical Center.

The study stems from research in Blackburn's laboratory involving a signaling molecule named adenosine, which can orchestrate the process of inflammation in wound healing. Adenosine can also activate a cell surface receptor associated with COPD named A2B and produce osteopontin.

Blackburn's decade-long research has focused on blocking the A2B receptor. With the new study linking osteopontin to COPD, Blackburn believes his laboratory may have uncovered a protein that could lead to a more targeted approach to treating emphysema.

"As a physician scientist, one goal of drug development is to offer more specific drug targets to treat the disorder and osteopontin provides a specific target that may be associated with fewer side effects," Schneider said.

"This paper adds a new element, osteopontin, to the mix by discovering its significant role in the development of COPD with emphysema ... It's still too early to be used clinically, but there may be a place for osteopontin in the future as an indicator of lung disease in progress that leads to COPD and emphysema," Castriotta said.

Blackburn is director of the Graduate Program in Biochemistry and Molecular Biology at the UT Medical School.

Schneider is a graduate research assistant at The University of Texas Graduate School of Biomedical Sciences at Houston and is a recipient of a T32 training grant by the Center for Clinical and Translational Sciences at the UT Health Science Center at Houston.

The study is titled "Adenosine and osteopontin contribute to the development of chronic obstructive pulmonary disease." Other contributors from the Department of Biochemistry and Molecular Biology were graduate students Janci C. Lindsay and Yang Zhou, as well as senior research assistant Jose G. Molina.

The study was funded by the National Institutes of Health and the National Center for Research Resources.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Could this protein protect people against coronary artery disease?
17.11.2017 | University of North Carolina Health Care

nachricht Microbial resident enables beetles to feed on a leafy diet
17.11.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

NASA detects solar flare pulses at Sun and Earth

17.11.2017 | Physics and Astronomy

NIST scientists discover how to switch liver cancer cell growth from 2-D to 3-D structures

17.11.2017 | Health and Medicine

The importance of biodiversity in forests could increase due to climate change

17.11.2017 | Studies and Analyses

VideoLinks
B2B-VideoLinks
More VideoLinks >>>