Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT scientists discover link between protein and lung disease

17.09.2009
In a development that could lead to a novel approach to the treatment of a devastating lung disease, biochemists at The University of Texas Health Science Center at Houston report they are the first to link the osteopontin (OPN) protein to chronic obstructive pulmonary disease (COPD). Findings appear online and will be in the January 2010 print issue of The FASEB Journal, the journal of The Federation of American Societies for Experimental Biology.

More than 12 million Americans are currently diagnosed with this incurable illness, which is the fourth leading cause of death, the National Heart Lung and Blood Institute reports. In the United States, the term COPD includes two main conditions - emphysema and chronic obstructive bronchitis.

The researchers were able to prevent COPD features in a mouse model by genetically removing osteopontin. To gauge the applicability of their findings to humans, the investigators analyzed the airways of people with COPD and found elevated levels of the protein.

"This is an important crossover study," said Michael Blackburn, Ph.D., the study's senior author and professor in the Department of Biochemistry and Molecular Biology at The University of Texas Medical School at Houston. "Because we can show osteopontin is elevated in people with COPD, this suggests that osteopontin could serve as both an indicator of disease progression and a therapeutic target."

In the study, researchers induced COPD features in mice and then compared symptoms experienced by mice with osteopontin and those without. The mice without the protein had less inflammation and lung disease. "The lack of osteopontin in the mice prevented the COPD features," said Daniel Schneider, the study's lead author and an M.D./Ph.D. candidate at the UT Health Science Center at Houston.

"This paper reveals exciting new information on the pathogenetic mechanisms involved in the development of chronic obstructive pulmonary disease and emphysema," said Richard J. Castriotta, M.D., professor and director of the Pulmonary, Critical Care and Sleep Medicine Division at the UT Medical School at Houston and medical director of the Sleep Disorder Center at Memorial Hermann - Texas Medical Center.

The study stems from research in Blackburn's laboratory involving a signaling molecule named adenosine, which can orchestrate the process of inflammation in wound healing. Adenosine can also activate a cell surface receptor associated with COPD named A2B and produce osteopontin.

Blackburn's decade-long research has focused on blocking the A2B receptor. With the new study linking osteopontin to COPD, Blackburn believes his laboratory may have uncovered a protein that could lead to a more targeted approach to treating emphysema.

"As a physician scientist, one goal of drug development is to offer more specific drug targets to treat the disorder and osteopontin provides a specific target that may be associated with fewer side effects," Schneider said.

"This paper adds a new element, osteopontin, to the mix by discovering its significant role in the development of COPD with emphysema ... It's still too early to be used clinically, but there may be a place for osteopontin in the future as an indicator of lung disease in progress that leads to COPD and emphysema," Castriotta said.

Blackburn is director of the Graduate Program in Biochemistry and Molecular Biology at the UT Medical School.

Schneider is a graduate research assistant at The University of Texas Graduate School of Biomedical Sciences at Houston and is a recipient of a T32 training grant by the Center for Clinical and Translational Sciences at the UT Health Science Center at Houston.

The study is titled "Adenosine and osteopontin contribute to the development of chronic obstructive pulmonary disease." Other contributors from the Department of Biochemistry and Molecular Biology were graduate students Janci C. Lindsay and Yang Zhou, as well as senior research assistant Jose G. Molina.

The study was funded by the National Institutes of Health and the National Center for Research Resources.

Rob Cahill
Media Hotline: 713-500-3030

Robert Cahill | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>