Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UT rheumatologists advance genetic research related to disabling form of arthritis

11.01.2010
Work done in part by researchers at The University of Texas Health Science Center at Houston has led to the discovery of two new genes that are implicated in ankylosing spondylitis (AS), an inflammatory and potentially disabling disease. In addition, the international research team pinpointed two areas along stretches of DNA that play an important role in regulating gene activity associated with the arthritic condition.

The findings, a critical milestone in the understanding of AS, are published in the January issue of Nature Genetics, a journal that emphasizes research on the genetic basis for common and complex diseases. "This helps us better understand what is driving this disease and gives us direction for new treatments and diagnostic tests," said John D. Reveille, M.D., the study's principal investigator and professor and director of the Division of Rheumatology and Clinical Immunogenetics at The University of Texas Medical School at Houston.

Reveille, the university's Linda and Ronny Finger Foundation Distinguished Chair in Neuroimmunologic Disorders, and Matthew A. Brown, M.D., professor of immunogenetics at Australia's University of Queensland, led the research by the Triple "A" Spondylitis Consortium Genetic Study (i.e. the TASC or Australo-Anglo-American Spondylitis Consortium). Based on work from a genome-wide association scan, the team identified genes ANTXR2 and IL1R2 as well as two gene deserts, segments of DNA between genes on chromosomes 2 and 21 that are associated with ankylosing spondylitis. Importantly, the study also confirmed the Triple "A" Australo-Anglo-American Spondylitis Consortium's previously reported associations of genes IL23R and ERAP1, formerly known as ARTS1.

Reveille, chief of rheumatology at Memorial Hermann-Texas Medical Center, said the genetic discoveries bring the scientific community closer to fully understanding AS, a chronic form of arthritis that attacks the spine and also can target other joints and organs in the body. The Centers for Disease Control and Prevention for the National Arthritis Data Workgroup estimates that AS and its related diseases affect as many as 2.4 million people in the United States. It generally strikes patients in their teens, 20s or 30s and can cause a complete fusion of the spine, leaving patients unable to straighten and bend.

Steve Haskew, who has lived with AS for more than three decades, said these genetic discoveries offer hope to patients, especially those newly diagnosed.

"When I first started experiencing lower back pain and the aching joints, no one could tell me what was wrong," said Haskew, co-leader of an AS support group. "It's fascinating to see how far we've come and how much has been learned about the disease."

Laurie Savage, co-principal investigator and executive director of the Spondylitis Association of America (SAA) said, "These new breakthroughs are, indeed, good news for those whom we serve. It is very encouraging to know that the health impact and economic consequences of spondyloarthritis in the world eventually will be contained as a direct consequence of the dedication of Drs. Reveille, Brown and colleagues, and that of the many individuals affected by spondyloarthritis who have participated in these studies."

The study, titled "Genomewide association study of ankylosing spondylitis identifies multiple non-MHC susceptibility loci," was supported in part by two grants from the National Institute of Arthritis and Musculoskeletal and Skin Diseases. Other study contributors from the UT Health Science Center at Houston are research associates Laura Diekman and Rui Jin and Xiaodong Zhou, M.D., associate professor of medicine.

Meredith Raine | EurekAlert!
Further information:
http://www.uth.tmc.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

Ultrathin device harvests electricity from human motion

24.07.2017 | Power and Electrical Engineering

Scientists announce the quest for high-index materials

24.07.2017 | Materials Sciences

ADIR Project: Lasers Recover Valuable Materials

24.07.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>