Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USM Unveils Plant Genome of Billion-dollar Global Industry

29.10.2009
The Centre for Chemical Biology, Universiti Sains Malaysia had successfully decoded the rubber tree genome. This accomplishment could potentially place Malaysia as the biggest producer of rubber.

The Minister of Higher Education Dato’ Seri Mohamed Khaled Nordin announced at CCB@USM yesterday that this major achievement could lead to many end products and contribute to the billion dollar rubber industry.

Khaled stated that CCB@USM had successfully decoded the draft of the 2 billion base genome of the rubber tree Hevea brasiliensis through its chemical biology discovery platform.

“This project is a result of an international collaboration led by CCB@USM that forms an excellent foundation for major contributions to society at the bottom billion,” he said during the press conference.

Also present were the Vice Chancellor of Universiti Sains Malaysia Prof. Tan Sri Dato’ Dzulkifli Abdul Razak, the Chief Executive Officer of CCB@USM, Prof Maqsudul Alam, and the Chief Operating Officer of Malaysian Biotechnology Corporation, Dr. Wan Abdul Rahman Wan Yaacob.

Khaled added that the most significant benefit of this finding was that it will help the nation in developing a high quality breed of rubber tree with resistance to diseases such as South American Leaf Blight and white root.

He also explained that Malaysia could potentially be the hub for rubber tree biotechnological research in Asia and at the same time train competent younger generation of scientists skilled in various disciplines such as genomics, molecular biology, and bioinformatics.

The Deputy Director (Research) of CCB@USM, Prof Nazalan Najimudin, expressed that this effort will empower the nation (Malaysia) to remain as the leader in rubber research and be at the forefront in the global rubber industry. This will enhance Malaysia’s competitiveness in rubber production. Malaysia is currently the world's fourth biggest producer, after Indonesia, Thailand, and India.

“The genome information will enable researchers to understand genetic characteristics of different breeds of rubber trees well in advance compared to conventional breeding techniques that are currently being used. As an example, for the development of the rubber tree for the timber or wood industry, determination of the girth of a rubber tree may take 10 to 12 years. With this genome information, we may be able to detect varieties that are able to produce large girths as early as a year or less.”

“This is one obvious benefit that we could obtain from this rubber tree genome. There are many other biotechnological studies which deal with pharmaceuticals, health, and others that can be performed.”

Nazalan also explained that institutions of higher learning contribute to innovations that could give high benefits to the national economy.

“This study relies upon the belief that for us to advance and obtain good returns involving the rubber tree, we must have the fundamental knowledge and the basic information on the rubber tree itself.”

“Filing of intellectual property claims requires one to possess information or knowledge which is not yet released to the public domain. Therefore, this genome sequencing project allows us to discover key information and protect them before others can exploit and make claims. “

He reiterated that furniture from rubberwood has proven popular and is an important export for Malaysia. The trait that can be developed and improved is in the properties of rubberwood and the genome information will move this area of plant breeding very fast.

For further enquiry, please contact:

PROFESSOR NAZALAN NAJIMUDIN
DEPUTY DIRECTOR (RESEARCH)
CENTRE FOR CHEMICAL BIOLOGY (CCB@USM)
UNIVERSITI SAINS MALAYSIA
11800 PENANG
MALAYSIA
Email: nazalan@usm.my
Phone: +60 12 598 5600

Prof Nazalan Najimudin | Research asia research news
Further information:
http://www.usm.my
http://www.researchsea.com

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>