Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers uncover mechanism that allows influenza virus to evade the body's immune response

25.05.2009
Findings could lead to new drug therapies to enhance innate immunity
Researchers at the University of Southern California (USC) have identified a critical molecular mechanism that allows the influenza virus to evade the body's immune response system.

The study will be published in the May 21 issue of the journal Cell Host & Microbe.

"We have found a mechanism that the influenza virus uses to inhibit the body's immune response that emphasizes the vital role of a certain protein in defending against viruses,"," says Jae Jung, Ph.D., professor and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC, and the principal investigator of the study. "Along with our previous studies (Nature 2007 and PNAS 2008), this finding could provide researchers with the information needed to create a new drug to enhance immunity and block influenza virus infection and replication."

Several specific intracellular receptors are responsible for detecting the virus and activating the body's defensive mechanisms. When a virus' RNA enters the intracellular fluid, a receptor known as retinoic-acid-inducible gene I (RIG-I) detects it and triggers a response that limits virus replication and calls the body's defenses into action. RIG-I acts as the sensor and security force against attacks, Jung explains. Then, a protein known as TRIM25 helps RIG-I transmit an alarm signal, which ultimately floods the cell and surrounding tissue with antiviral interferons.

The influenza virus is highly infectious and poses a serious and sometimes deadly health risk because of its ability to mutate into new strains and spread quickly during seasonal epidemics, as seen in the recent outbreak of the H1N1 swine flu virus, Jung says.

Researchers have long been working to understand how respiratory influenza is able to slip past the body's innate immune responses. They have found that the influenza A virus has evolved by incorporating Non-structural protein 1 (NS1) into its genome to escape the RIG-I alarm system.

This process is one reason why the virus kills an average of 36,000 people every year. In fact, the 1918 "Spanish flu" pandemic influenza virus, which killed over 40 million people worldwide, muted the RIG-I response and interferon activity much more efficiently than contemporary flu viruses, Jung notes.

"Despite the conceptual linking of RIG-I with flu virus NS1, however, the precise mechanism has been unclear for a long period of time," he says.

By studying the immune responses of animal models, researchers found that the influenza A virus NS1 attacks TRIM25, inhibiting its ability to assist RIG-I trigger the alarm system against the virus. Remarkably, a flu virus carrying an NS1 mutant defective for this activity loses its virulence in animal models, Jung says.

"We now know that the influenza virus escapes recognition via the interaction of NS1 with TRIM25, which inhibits the body's immune response," he says. "Understanding this host-virus interaction is an essential step in developing safe and effective drugs to target the influenza virus."

This work was performed in collaboration with Adolfo Garcia-Sastre, Ph.D., at Mt. Sinai Medical School and the final doctorate experiments of Michaela Gack, Ph.D., who is the paper's first author and currently a faculty member at Harvard Medical School.

Michaela Ulrike Gack, Randy Allen Albrecht, Tomohiko Urano, Kyung-Soo Inn, I-Chueh Huang, Elena Carnero, Michael Farzan, Satoshi Inoue, Jae Ung Jung*, Adolfo Garica-Sastre*. "Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host VIral RNA Sensor RIG-I." Cell Host & Microbe. DOI: 10.1016/j.chom.2009.04.006.

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

“Pregnant” Housefly Males Demonstrate the Evolution of Sex Determination

23.05.2017 | Life Sciences

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>