Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers uncover mechanism that allows influenza virus to evade the body's immune response

25.05.2009
Findings could lead to new drug therapies to enhance innate immunity
Researchers at the University of Southern California (USC) have identified a critical molecular mechanism that allows the influenza virus to evade the body's immune response system.

The study will be published in the May 21 issue of the journal Cell Host & Microbe.

"We have found a mechanism that the influenza virus uses to inhibit the body's immune response that emphasizes the vital role of a certain protein in defending against viruses,"," says Jae Jung, Ph.D., professor and chair of the Department of Molecular Microbiology and Immunology at the Keck School of Medicine of USC, and the principal investigator of the study. "Along with our previous studies (Nature 2007 and PNAS 2008), this finding could provide researchers with the information needed to create a new drug to enhance immunity and block influenza virus infection and replication."

Several specific intracellular receptors are responsible for detecting the virus and activating the body's defensive mechanisms. When a virus' RNA enters the intracellular fluid, a receptor known as retinoic-acid-inducible gene I (RIG-I) detects it and triggers a response that limits virus replication and calls the body's defenses into action. RIG-I acts as the sensor and security force against attacks, Jung explains. Then, a protein known as TRIM25 helps RIG-I transmit an alarm signal, which ultimately floods the cell and surrounding tissue with antiviral interferons.

The influenza virus is highly infectious and poses a serious and sometimes deadly health risk because of its ability to mutate into new strains and spread quickly during seasonal epidemics, as seen in the recent outbreak of the H1N1 swine flu virus, Jung says.

Researchers have long been working to understand how respiratory influenza is able to slip past the body's innate immune responses. They have found that the influenza A virus has evolved by incorporating Non-structural protein 1 (NS1) into its genome to escape the RIG-I alarm system.

This process is one reason why the virus kills an average of 36,000 people every year. In fact, the 1918 "Spanish flu" pandemic influenza virus, which killed over 40 million people worldwide, muted the RIG-I response and interferon activity much more efficiently than contemporary flu viruses, Jung notes.

"Despite the conceptual linking of RIG-I with flu virus NS1, however, the precise mechanism has been unclear for a long period of time," he says.

By studying the immune responses of animal models, researchers found that the influenza A virus NS1 attacks TRIM25, inhibiting its ability to assist RIG-I trigger the alarm system against the virus. Remarkably, a flu virus carrying an NS1 mutant defective for this activity loses its virulence in animal models, Jung says.

"We now know that the influenza virus escapes recognition via the interaction of NS1 with TRIM25, which inhibits the body's immune response," he says. "Understanding this host-virus interaction is an essential step in developing safe and effective drugs to target the influenza virus."

This work was performed in collaboration with Adolfo Garcia-Sastre, Ph.D., at Mt. Sinai Medical School and the final doctorate experiments of Michaela Gack, Ph.D., who is the paper's first author and currently a faculty member at Harvard Medical School.

Michaela Ulrike Gack, Randy Allen Albrecht, Tomohiko Urano, Kyung-Soo Inn, I-Chueh Huang, Elena Carnero, Michael Farzan, Satoshi Inoue, Jae Ung Jung*, Adolfo Garica-Sastre*. "Influenza A Virus NS1 Targets the Ubiquitin Ligase TRIM25 to Evade Recognition by the Host VIral RNA Sensor RIG-I." Cell Host & Microbe. DOI: 10.1016/j.chom.2009.04.006.

Meghan Lewit | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>