Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

USC researchers identify alternate pathway that leads to palate development

13.08.2008
Signaling redundancy during palate and tooth formation can shed light to understanding cancer and cell biology in addition to cleft palate
(Los Angeles CA) Researchers at the University Of Southern California School Of Dentistry have uncovered another clue behind the causes of cleft palate and the process that leads to palate formation.

Cleft palate is one of the most common congenital birth defects, occurring in one out of every 700 live births. Clefts are more common in children of American Indian, Hispanic or Asian descent. While males are twice as likely to have a cleft lip, females are twice as likely to have a cleft palate.

But genes are not the only factor influencing the malformation says, Yang Chai, professor and director of the USC School of Dentistry's Center for Craniofacial Molecular Biology.

Researchers around the world believe that most cases of cleft lip and cleft palate are caused by an interaction of genetic and environmental factors; however, a specific cause may not be discovered for every baby.

Growth factors responsible for development, including palate and tooth formation, have more than one way to direct cells to make changes, says Chai.

The Discovery by the USC team is spotlighted in the August 12 issue of Development Cell.

Chai's group, which includes fellow CCMB researchers Xun Xu, Jun Han, Yoshihiro Ito and Pablo Bringas Jr., has been specifically scrutinizing the transforming growth factor beta (TGF-ß) family's role in palate formation problems.

The TGF- ßs are not only involved in palate formation, they plays an important development role all over the body. They work by binding to cell surface receptors and activating signaling molecules within the cell. These signaling molecules then travel to the nucleus, the cell's control center, and prompt DNA expression in order to spur changes in the cell.

"For instance, we've learned that when someone has a haploid insufficiency and is missing one copy of the TGF-ß gene, he or she is more vulnerable to environmental insults that can cause cleft palate, such as drugs, smoking and alcohol," Chai says.

Smad4 is one of the main signaling molecules used in the TGF-ß pathway during palate and tooth development. Chai says his team had initially hypothesized that since irregularities in the TGF-ß gene or its cell surface receptors sparked palate malformation in experimental mouse models, knocking out the Smad4 genes would do the same.

"We found that if we blocked TGF-ß or the receptors, a cleft palate develops," he says, "But when Smad4 was blocked, normal palate epithelium still covered the palatal shelf.

The team found that p38 MAPK (mitogen activated protein kinase) can take Smad4's place in the pathway and signal DNA expression to form the palate. Normally serving as a stress-response protein and activated by environmental insults, such as ultraviolet radiation on skin cells, p38 MAPK appears to act as a "spare tire" when Smad4 function is compromised, Chai says. When either one or the other is inactivated, the palate epithelium will still form properly, failing to form only if both signaling molecules are knocked out.

P38 MAPK isn't a perfect replacement for Smad4 during oral development –when Smad4 is nonfunctional, teeth only partially form – but the results are still surprising for a molecule better known for its roles during cancer, Chai says.

Further study could have big implications not only on congenital oral birth defects like cleft palate but also on malformations and diseases in tissues throughout the body, and patients could one day be able to take advantage of new genetic counseling and treatment methods stemming from this information, he hopes.

For new parents this latest development offers hope for the future. Those individuals with a family risk of either cleft lip or cleft palate can seek counseling early on and identify craniofacial teams that will assist them in following the best treatment plans for their child.

In addition, the discovery opens up other opportunities for researchers and clinicians.

"This information is useful not just for palate and teeth but also for cancer and cell biology in general," he says. "Ultimately, we have to be translational in order to make ourselves useful to patients."

Angelica Urquijo | EurekAlert!
Further information:
http://www.usc.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>