Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


USC researchers identify alternate pathway that leads to palate development

Signaling redundancy during palate and tooth formation can shed light to understanding cancer and cell biology in addition to cleft palate
(Los Angeles CA) Researchers at the University Of Southern California School Of Dentistry have uncovered another clue behind the causes of cleft palate and the process that leads to palate formation.

Cleft palate is one of the most common congenital birth defects, occurring in one out of every 700 live births. Clefts are more common in children of American Indian, Hispanic or Asian descent. While males are twice as likely to have a cleft lip, females are twice as likely to have a cleft palate.

But genes are not the only factor influencing the malformation says, Yang Chai, professor and director of the USC School of Dentistry's Center for Craniofacial Molecular Biology.

Researchers around the world believe that most cases of cleft lip and cleft palate are caused by an interaction of genetic and environmental factors; however, a specific cause may not be discovered for every baby.

Growth factors responsible for development, including palate and tooth formation, have more than one way to direct cells to make changes, says Chai.

The Discovery by the USC team is spotlighted in the August 12 issue of Development Cell.

Chai's group, which includes fellow CCMB researchers Xun Xu, Jun Han, Yoshihiro Ito and Pablo Bringas Jr., has been specifically scrutinizing the transforming growth factor beta (TGF-ß) family's role in palate formation problems.

The TGF- ßs are not only involved in palate formation, they plays an important development role all over the body. They work by binding to cell surface receptors and activating signaling molecules within the cell. These signaling molecules then travel to the nucleus, the cell's control center, and prompt DNA expression in order to spur changes in the cell.

"For instance, we've learned that when someone has a haploid insufficiency and is missing one copy of the TGF-ß gene, he or she is more vulnerable to environmental insults that can cause cleft palate, such as drugs, smoking and alcohol," Chai says.

Smad4 is one of the main signaling molecules used in the TGF-ß pathway during palate and tooth development. Chai says his team had initially hypothesized that since irregularities in the TGF-ß gene or its cell surface receptors sparked palate malformation in experimental mouse models, knocking out the Smad4 genes would do the same.

"We found that if we blocked TGF-ß or the receptors, a cleft palate develops," he says, "But when Smad4 was blocked, normal palate epithelium still covered the palatal shelf.

The team found that p38 MAPK (mitogen activated protein kinase) can take Smad4's place in the pathway and signal DNA expression to form the palate. Normally serving as a stress-response protein and activated by environmental insults, such as ultraviolet radiation on skin cells, p38 MAPK appears to act as a "spare tire" when Smad4 function is compromised, Chai says. When either one or the other is inactivated, the palate epithelium will still form properly, failing to form only if both signaling molecules are knocked out.

P38 MAPK isn't a perfect replacement for Smad4 during oral development –when Smad4 is nonfunctional, teeth only partially form – but the results are still surprising for a molecule better known for its roles during cancer, Chai says.

Further study could have big implications not only on congenital oral birth defects like cleft palate but also on malformations and diseases in tissues throughout the body, and patients could one day be able to take advantage of new genetic counseling and treatment methods stemming from this information, he hopes.

For new parents this latest development offers hope for the future. Those individuals with a family risk of either cleft lip or cleft palate can seek counseling early on and identify craniofacial teams that will assist them in following the best treatment plans for their child.

In addition, the discovery opens up other opportunities for researchers and clinicians.

"This information is useful not just for palate and teeth but also for cancer and cell biology in general," he says. "Ultimately, we have to be translational in order to make ourselves useful to patients."

Angelica Urquijo | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Strong, steady forces at work during cell division
20.10.2016 | University of Massachusetts at Amherst

nachricht Disturbance wanted
20.10.2016 | Max Delbrück Center for Molecular Medicine in the Helmholtz Association

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Innovative technique for shaping light could solve bandwidth crunch

20.10.2016 | Physics and Astronomy

Finding the lightest superdeformed triaxial atomic nucleus

20.10.2016 | Physics and Astronomy

NASA's MAVEN mission observes ups and downs of water escape from Mars

20.10.2016 | Physics and Astronomy

More VideoLinks >>>