Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unusual bacteria help balance the immune system in mice

Discovery lays groundwork for better understanding of protective human microbes in the gut

Medical researchers have long suspected that obscure bacteria living within the intestinal tract may help keep the human immune system in balance. An international collaboration co-led by scientists at NYU Langone Medical Center has now identified a bizarre-looking microbial species that can single-handedly spur the production of specialized immune cells in mice.

This remarkable activation of the immune response could point to a similar phenomenon in humans, helping researchers understand how gut-dwelling bacteria protect us from pathogenic bacteria, such as virulent strains of E. coli. The study, published in the Oct. 30, 2009, issue of Cell, also supports the idea that specific bacteria may act like neighborhood watchdogs at key locations within the small intestine, where they sense the local microbial community and sound the alarm if something seems amiss.

In mice, at least, the newly identified neighborhood watchdog looks like something out of Disney's "The Shaggy D.A." Distinguished by long hair-like filaments, "These bacteria are the most astounding things I've ever seen," says Dan Littman, MD, PhD, the Helen L. and Martin S. Kimmel Professor of Molecular Immunology and a Howard Hughes Medical Institute Investigator.

Co-led by Dr. Littman's lab, the collaboration with researchers in Japan, California, and Massachusetts zeroed in on a little-known microbe named segmented filamentous bacterium, or SFB. In mice raised under germ-free conditions, the scientists found that adding SFB was sufficient to trigger the appearance of specialized T helper cells known as Th17 cells. These immune specialists, in turn, can send signals that tell epithelial cells lining the small intestine to increase their output of molecules targeting selected microbes.

For the study's mice, the infection-fighting response was enough to ward off the pathogen Citrobacter rodentium, considered a good model for the type of disease-causing E. coli found in contaminated foods like spinach or ground beef. Without SFB to protect them, mice infected with Citrobacter rodentium became ill before recovering.

In the same way, commensal microbes—beneficial bacteria—could decrease our susceptibility to various pathogenic invaders. "So you can immediately see some practical application of this, if one can mimic the presence of these commensal bacteria to strengthen resistance to pathogenic microbes," Dr. Littman says.

Thanks to rapid progress in the field of genomics, he expects the entire DNA sequence of the SFB species to be completed within a few months. Armed with the sequence, researchers could focus on specific proteins. "For example, can we identify a protein that, when we inject it into an epithelial cell, sets off in motion the whole pathway to make Th17 cells?" he says. "By knowing how to do this, you may be able to give people a peptide or a compound that induces Th17 cells by mimicking the bacterial product, and in that way either protect or ameliorate the effect of the infection."

Too much Th17 cell activation, however, can lead to harmful inflammation, Dr. Littman says. Excessive induction by specific microbes in the gut, then, could contribute to autoimmune diseases such as rheumatoid arthritis, psoriasis, Crohn's disease, and possibly even multiple sclerosis.

The study's co-authors include Ivaylo I. Ivanov and Nicolas Manel from NYU Langone Medical Center's Helen L. and Martin S. Kimmel Center for Biology and Medicine `at the Skirball Institute of Biomolecular Medicine; Kenya Honda, Koji Atarashi, Takeshi Tanoue, and Kiyoshi Takeda from Osaka University; Tatsuichiro Shima, Akemi Imaoka, and Yoshinori Umesaki from the Yakult Central Institute for Microbiological Research in Tokyo; Kikuji Itoh from the University of Tokyo; Eoin L. Brodie, Ulas Karaoz, Katherine C. Goldfarb, and Clark A. Santee from Lawrence Berkeley National Laboratory; Susan V. Lynch from the University of California at San Francisco; and Dongguang Wei at Carl Zeiss SMT Inc. in Massachusetts.

The study was supported by fellowships from the Crohn's and Colitis Foundation of America and the Cancer Research Institute, and by grants from the National Institutes of Health; the Japan Science and Technology Agency's PRESTO Program; the Ministry of Education, Culture, Sports, Science and Technology in Japan; the Senri Life Science Foundation; and the Naito Foundation

About NYU Langone Medical Center

Located in New York City, NYU Langone Medical Center is one of the nation's premier centers of excellence in health care, biomedical research, and medical education. For over 168 years, NYU physicians and researchers have made countless contributions to the practice and science of health care. Today the Medical Center consists of NYU School of Medicine, including the Smilow Research Center, the Skirball Institute of Biomolecular Medicine, and the Sackler Institute of Graduate Biomedical Sciences; the three hospitals of NYU Hospitals Center, Tisch Hospital, a 726-bed acute-care general hospital, Rusk Institute of Rehabilitation Medicine, the first and largest facility of its kind, and NYU Hospital for Joint Diseases, a leader in musculoskeletal care; and such major programs as the NYU Cancer Institute, the NYU Child Study Center, and the Hassenfeld Children's Center for Cancer and Blood Disorders.

Dorie Klissas | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>