Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Montreal researchers discover how drug prevents aging and cancer progression

27.03.2013
University of Montreal researchers have discovered a novel molecular mechanism that can potentially slows the aging process and may prevent the progression of some cancers.

In the March 23 online edition of the prestigious journal Aging Cell, scientists from the University of Montreal explain how they found that the antidiabetic drug metformin reduces the production of inflammatory cytokines that normally activate the immune system, but if overproduced can lead to pathological inflammation, a condition that both damages tissues in aging and favors tumor growth.

"Cells normally secrete these inflammatory cytokines when they need to mount an immune response to infection, but chronic production of these same cytokines can also cause cells to age. Such chronic inflammation can be induced, for example by smoking" and old cells are particular proficient at making and releasing cytokines says Dr. Gerardo Ferbeyre, senior author and a University of Montreal biochemistry professor. He adds that, "We were surprised by our finding that metformin could prevent the production of inflammatory cytokines by old cells ".

In collaboration with Michael Pollack of the Segal Cancer Centre of the Jewish General Hospital, McGill University, Dr. Ferbeyre and his team discovered that metformin prevented the synthesis of cytokines directly at the level of the regulation of their genes. "The genes that code for cytokines are normal, but a protein that normally triggers their activation called NF-B can't reach them in the cell nucleus in metformin treated cells", Dr. Ferbeyre explained. "We also found that metformin does not exert its effects through a pathway commonly thought to mediate its antidiabetic effects", he added.

"We have suspected that metformin acts in different ways on different pathways to cause effects on aging and cancer. Our studies now point to one mechanism", noted lead authors of the study Olga Moiseeva and Xavier Deschênes-Simard. Dr. Ferbeyre emphasized that, "this is an important finding with implications for our understanding on how the normal organism defends itself from the threat of cancer and how a very common and safe drug may aid in treatment of some cancers and perhaps slow down the aging process. He adds, "It remains that determining the specific targets of metformin would give us an even better opportunity of profit from its beneficial effects. That's what we want to figure out next".

Notes:

The University of Montreal is known officially as Université de Montréal. The research involved in the study "Metformin inhibits the senescence-associated secretory phenotype by interfering with IKK/NF-B activation" was financed by Prostate Cancer Canada and the Canadian Institutes of Health Research (MOP-82887).

To read the Aging Cell article onlinelibrary.wiley.com/doi/10.1111/acel.12075/

About the University of Montreal: http://www.umontreal.ca/english

About the Department of Biochemistry http://www.bcm.umontreal.ca

About Dr. Ferbeyre's research: http://www.mapageweb.umontreal.ca/ferbeyre/index-en.htm

William Raillant-Clark | EurekAlert!
Further information:
http://www.umontreal.ca
http://www.umontreal.ca/english
http://www.bcm.umontreal.ca

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>