Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Michigan scientists identify chemical isolated from bananas as potent inhibitor of HIV infection

15.03.2010
Discovery of how BanLec binds to a key HIV-1 protein opens door to developing microbicides that can prevent sexual transmission of HIV
A potent new HIV inhibitor derived from bananas may open the door to new treatments to prevent sexual transmission of HIV, according to a University of Michigan Medical School study published this week.

Scientists have an emerging interest in lectins, naturally occurring chemicals in plants, because of their ability to halt the chain of reaction that leads to a variety of infections.

In laboratory tests, BanLec, the lectin found in bananas, was as potent as two current anti-HIV drugs. Based on the findings published March 19 in the Journal of Biological Chemistry, BanLec may become a less expensive new component of applied vaginal microbicides, researchers say.

New ways of stopping the spread of HIV are vitally needed. The rate of new HIV infections is outpacing the rate of new individuals getting anti-retroviral drugs by 2.5 to1, and at present it appears an effective vaccine is years away.

“HIV is still rampant in the U.S. and the explosion in poorer countries continues to be a bad problem because of tremendous human suffering and the cost of treating it,” says study senior author David Marvovitz, M.D., professor of internal medicine at the U-M Medical School.

Although condom use is quite effective, condoms are most successful in preventing infection if used consistently and correctly, which is often not the case.

“That’s particularly true in developing countries where women have little control over sexual encounters so development of a long-lasting, self-applied microbicide is very attractive,” Markovitz says.

Some of the most promising compounds for inhibiting vaginal and rectal HIV transmission are agents that block the virus prior to integration into its target cell.

The new study describes the complex actions of lectins and their ability to outsmart HIV. Lectins are sugar-binding proteins. They can identify foreign invaders, like a virus, and attach themselves to the pathogen. The U-M team discovered BanLec can inhibit HIV infection by binding to the sugar-rich HIV-1 envelope protein, gp120, and blocking its entry to the body.

Study co-authors Erwin J. Goldstein, Ph.D., professor emeritus of biological chemistry at U-M and Harry C. Winter, Ph.D., research assistant professor in biological chemistry at U-M, developed the biopurification method to isolate BanLec from bananas. Following their work, the U-M team discovered BanLec is an effective anti-HIV lectin and is similar in potency to T-20 and maraviroc, two anti-HIV drugs currently in clinical use.

Yet therapies using BanLec could be cheaper to make than current anti-retroviral medications which use synthetically produced components, plus BanLec may provide a wider range of protection, researchers say.

“The problem with some HIV drugs is that the virus can mutate and become resistant, but that’s much harder to do in the presence of lectins,” says lead author Michael D. Swanson, a doctoral student in the graduate program in immunology at the University of Michigan Medical School.

“Lectins can bind to the sugars found on different spots of the HIV-1 envelope, and presumably it will take multiple mutations for the virus to get around them,” he says.

Swanson is developing a process to molecularly alter BanLec to enhance its potential clinical utility. Clinical use is considered years away but researchers believe it could be used alone or with other anti-HIV drugs.

Authors say even modest success could save millions of lives. Other investigators have estimated that 20 percent coverage with a microbicide that is only 60 percent effective against HIV may prevent up to 2.5 million HIV infections in three years.
Authors: Michael D. Swanson, Harry C. Winter, Irwin J. Goldstein and David M. Markovitz, all of U-M.

Reference: The Journal of Biological Chemistry, Vol. 285, Issue 12
Funding: National Institutes of Health, Burroughs Wellcome Fund
Resources:
AIDS Info U.S. Department of Health and Human Services
http://www.aidsinfo.nih.gov/

U-M Medical School
http://www.med.umich.edu/medschool/

Graduate Program in Immunology
www.med.umich.edu/immprog/

U-M Department of Biological Chemistry
http://www.med.umich.edu/pibs/biochem/index.html

Shantell M. Kirkendoll | UMICH
Further information:
http://www.umich.edu
http://www.aidsinfo.nih.gov/

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>