Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of Maryland researchers identify fish protein that may inhibit cancer metastasis

20.03.2013
Cod-derived agent shows potential as dietary therapy to complement standard treatments for prostate cancer

Researchers at the University of Maryland School of Medicine have identified a peptide, or protein, derived from Pacific cod that may inhibit prostate cancer and possibly other cancers from spreading, according to preclinical research published online in the Proceedings of the National Academy of Sciences (PNAS).

"The use of natural dietary products with anti-tumor activity is an important and emerging field of research," says senior author Hafiz Ahmed, Ph.D., assistant professor of biochemistry and molecular biology at the University of Maryland School of Medicine and scientist at the Institute for Marine and Environmental Technology (IMET). "Understanding how these products work could allow us to develop foods that also act as cancer therapeutics and agents for immunotherapy."

Most people who succumb to cancer die because tumor cells invade the surrounding tissue and migrate into the nearby blood and lymph vessels, a process known as metastasis. For example, prostate cancer typically spreads to the bones, lungs and liver. Cancer cells that metastasize to other parts of the body grow new blood supplies and eventually overcome the person's organ systems.

"This study is among the first to explore the therapeutic utility of a bioactive cod TFD-containing glycopeptide to inhibit prostate cancer from progressing," says Dr. Ahmed, who also is affiliated with the University of Maryland Marlene and Stewart Greenebaum Cancer Center. The TFD (Thomsen-Friedenreich disaccharide) antigen in the fish protein is hidden in normal human cells but is exposed on the surface of cancer cells and is believed to play a key role in how cancer spreads.

Polar fish, such as northern cod, express glycoproteins that are rich in the TFD antigen, which protect them from freezing. The research team developed a special form of TFD, called TFD100, purified from Pacific cod.

Using animal models, the researchers found that TFD100 binds to galectin-3, a protein that is overexpressed in prostate cancer cells, and blocks its interaction with the TFD antigen found on the surface of the cells. Galectin-3 (gal3) enables cancer cells to adhere to the walls of blood vessels and also kills activated T-cells, a type of white blood cell, which helps the cancer cells to spread throughout the body and evade the immune system. The researchers observed that TFD100 prevents cancer cells from attaching to the vessel walls, suppresses T-cell death and boosts the immune response.

"Because the gal3-TFD interaction is a key factor driving metastasis in most epithelial cancers, this high-affinity TFD100 should be a promising anti-metastatic agent for the treatment of various cancers, including prostate adenocarcinoma," the researchers conclude in the study, which was published online March 11 in PNAS' Early Edition.

"This research breaks new ground in our ongoing quest to discover new ways to prevent cancers from metastasizing to distant parts of the body," says E. Albert Reece, M.D., Ph.D., M.B.A., Vice President for Medical Affairs at the University of Maryland and the John Z. and Akiko K. Bowers Distinguished Professor and dean of the University of Maryland School of Medicine. "If we could one day offer patients a natural dietary supplement, derived from fish proteins, which could help to block that process, we could have a significant impact on improving patients' outcomes and survival."

Co-investigator Dhan V. Kalvakolanu, Ph.D., a professor of microbiology and immunology at the School of Medicine, notes that additional research is needed to develop a dietary supplement from the cod peptide that could complement chemotherapy and other standard treatments. "No single drug on its own is going to offer protection against advanced cancers. We need a multi-pronged approach to successfully treat this disease," he adds.

The study was conducted by researchers from Dr. Ahmed's laboratory, in collaboration with Dr. Kalvakolanu and other investigators at the University of Maryland Greenebaum Cancer Center and the IMET. Prasun Guha, Ph.D., a postdoctoral fellow in Dr. Ahmed's laboratory, was the study's lead author.

The research was funded by grants from the National Institutes of Health (CA133935, CA141970, GM070589, CA105005), the U.S. Army Medical Research and Materiel Command, the Council of Higher Education (Turkey) and the University of Maryland start-up fund.

About the University of Maryland School of Medicine

Established in 1807, the University of Maryland School of Medicine is the first public medical school in the United States, and the first to institute a residency-training program. The School of Medicine was the founding school of the University of Maryland and today is an integral part of the 11-campus University System of Maryland. On the University of Maryland's Baltimore campus, the School of Medicine serves as the anchor for a large academic health center which aims to provide the best medical education, conduct the most innovative biomedical research and provide the best patient care and community service to Maryland and beyond. http://www.medschool.umaryland.edu.

About the University of Maryland Marlene and Stewart Greenebaum Cancer Center

The University of Maryland Marlene and Stewart Greenebaum Cancer Center is a National Cancer Institute-designated cancer center, which is part of the University of Maryland Medical Center and the University of Maryland School of Medicine. The center is recognized for its active clinical and basic science research program. It has comprehensive programs to treat all types of cancer and is a major referral center for patients throughout Maryland and the region. It has been recognized as one of the top 15 cancer centers in the nation by U.S. News & World Report in 2012-13. For more information about the center, go to http://www.umgcc.org.

About the Institute for Marine and Environmental Technology

IMET is a joint University System of Maryland research institute capitalizing on the strengths of the University of Maryland Center for Environmental Science, the University of Maryland Baltimore County and the University of Maryland Baltimore. IMET utilizes the research, training and technology transfer capabilities of these partner institutes to further its mission. The scientists at IMET conduct marine and environmental research and thereby create technologies designed to foster the protection and restoration of coastal marine systems and their watersheds, sustainable use of their resources and improvement of human health. For more information about the center, go to http://imet.usmd.edu.

Cod glycopeptide with picomolar affinity to galectin-3 suppresses T-cell apoptosis and prostate cancer metastasis

Prasun Guha, Engin Kaptan, Gargi Bandyopadhyaya, Sabina Kaczanowska, Eduardo Davila, Keyata Thompson, Stuart S. Martin, Dhananjaya V. Kalvakolanu, Gerardo R. Vasta, and Hafiz Ahmed

Karen Warmkessel | EurekAlert!
Further information:
http://www.umm.edu

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>