Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique study isolates DNA from Linnaeus' botanical collections

31.08.2009
Researchers at Uppsala University has succeeded in extracting long DNA fragments from dried, pressed plant material collected in the 1700s by Linnaeus' apprentice Adam Afzelius.

It is hoped that the study, led by Associate Professor Katarina Andreasen, will shed light on whether plants growing today at Linnaeus' Hammarby estate outside Uppsala reflect the species cultivated by Linnaeus himself.

A large number of plants of uncertain provenance grow at Carl Linnaeus' Hammarby estate, a museum and popular tourist destination. Have they been present since Linnaeus' time? In addition to probing this question, the current study will test the limits of DNA-sequencing methods with regard to old plant material and has already demonstrated that it is possible to sequence plant material more than 200 years old. The study is now published in the scientific journal Taxon.

"This opens up a number of exciting research possibilities in connection with material from herbaria throughout the world", says Katarina Andreasen.

The researchers hopes to initiate corresponding DNA investigations of plant material from the garden at Hammarby as soon as possible.

"It would be fun, if we can show that the old material is genetically identical with the plants currently growing at Hammarby, to create a living herbarium for summer visitors to the garden", says Katarina Andreasen.

Linnaeus' significance for the science of systematic biology, as reflected in locations in Sweden (Uppsala and Småland) and collection locations in seven other countries, is the focus of a World Heritage Site nomination. The foundations of systematic biology were laid by Carl Linnaeus through the aid of an extensive scientific network. If the nomination is approved by UNESCO preserved animals and plants will for the first time constitute a central aspect of a World Heritage Site.

Katarina Andreasen | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>