Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unique study isolates DNA from Linnaeus' botanical collections

Researchers at Uppsala University has succeeded in extracting long DNA fragments from dried, pressed plant material collected in the 1700s by Linnaeus' apprentice Adam Afzelius.

It is hoped that the study, led by Associate Professor Katarina Andreasen, will shed light on whether plants growing today at Linnaeus' Hammarby estate outside Uppsala reflect the species cultivated by Linnaeus himself.

A large number of plants of uncertain provenance grow at Carl Linnaeus' Hammarby estate, a museum and popular tourist destination. Have they been present since Linnaeus' time? In addition to probing this question, the current study will test the limits of DNA-sequencing methods with regard to old plant material and has already demonstrated that it is possible to sequence plant material more than 200 years old. The study is now published in the scientific journal Taxon.

"This opens up a number of exciting research possibilities in connection with material from herbaria throughout the world", says Katarina Andreasen.

The researchers hopes to initiate corresponding DNA investigations of plant material from the garden at Hammarby as soon as possible.

"It would be fun, if we can show that the old material is genetically identical with the plants currently growing at Hammarby, to create a living herbarium for summer visitors to the garden", says Katarina Andreasen.

Linnaeus' significance for the science of systematic biology, as reflected in locations in Sweden (Uppsala and Småland) and collection locations in seven other countries, is the focus of a World Heritage Site nomination. The foundations of systematic biology were laid by Carl Linnaeus through the aid of an extensive scientific network. If the nomination is approved by UNESCO preserved animals and plants will for the first time constitute a central aspect of a World Heritage Site.

Katarina Andreasen | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

3-D-printed structures shrink when heated

26.10.2016 | Materials Sciences

Indian roadside refuse fires produce toxic rainbow

26.10.2016 | Health and Medicine

First results of NSTX-U research operations

26.10.2016 | Physics and Astronomy

More VideoLinks >>>