Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique study isolates DNA from Linnaeus' botanical collections

31.08.2009
Researchers at Uppsala University has succeeded in extracting long DNA fragments from dried, pressed plant material collected in the 1700s by Linnaeus' apprentice Adam Afzelius.

It is hoped that the study, led by Associate Professor Katarina Andreasen, will shed light on whether plants growing today at Linnaeus' Hammarby estate outside Uppsala reflect the species cultivated by Linnaeus himself.

A large number of plants of uncertain provenance grow at Carl Linnaeus' Hammarby estate, a museum and popular tourist destination. Have they been present since Linnaeus' time? In addition to probing this question, the current study will test the limits of DNA-sequencing methods with regard to old plant material and has already demonstrated that it is possible to sequence plant material more than 200 years old. The study is now published in the scientific journal Taxon.

"This opens up a number of exciting research possibilities in connection with material from herbaria throughout the world", says Katarina Andreasen.

The researchers hopes to initiate corresponding DNA investigations of plant material from the garden at Hammarby as soon as possible.

"It would be fun, if we can show that the old material is genetically identical with the plants currently growing at Hammarby, to create a living herbarium for summer visitors to the garden", says Katarina Andreasen.

Linnaeus' significance for the science of systematic biology, as reflected in locations in Sweden (Uppsala and Småland) and collection locations in seven other countries, is the focus of a World Heritage Site nomination. The foundations of systematic biology were laid by Carl Linnaeus through the aid of an extensive scientific network. If the nomination is approved by UNESCO preserved animals and plants will for the first time constitute a central aspect of a World Heritage Site.

Katarina Andreasen | EurekAlert!
Further information:
http://www.uu.se

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>