Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected reservoir of monocytes discovered in the spleen

03.08.2009
Mouse study indicates immune cells from spleen may be essential in healing heart attack damage

It takes a spleen to mend a broken heart – that's the conclusion of a surprising new report from researchers at the Massachusetts General Hospital (MGH) Center for Systems Biology, directed by Ralph Weissleder, MD, PhD.

In the July 31 issue of Science the team reports how, in following up an intriguing observation, they discovered an unexpected reservoir of the immune cells called monocytes in the spleen and went on to show that these cells are essential to recovery of cardiac tissue in an animal heart attack model.

"Monocytes are known to serve as a central defense system against injury, and we found that monocytes released from the spleen go directly to the injured heart and participate in wound healing," says Matthias Nahrendorf, MD, PhD, a co-lead author of the study.

Monocytes are generated in the bone marrow, released into the blood and are known to accumulate at injured or infected tissues, where they differentiate into macrophages or dendritic cells. In investigating processes involved in the healing of ischemic heart tissue – the sort of injury produced in a heart attack – in mice, the research team was surprised to find more monocytes accumulating at the site of injury than would be found in the animals' entire circulatory system. When they searched many types of tissue for the presence of cells with monocyte-specific molecules, they only found significant numbers of such cells in the spleen.

Monocytes in the spleen were identical in appearance, composition and function to monocytes in the blood. To investigate the splenic monocyte reservoir's potential involvement in cardiac healing, the researchers used several new technologies. A newly developed microscopic technique allowed them to determine how and where monocytes are stored in the spleen – previously known to store red blood cells – and to study how monocytes are released in response to an experimentally-induced heart attack. A novel three-dimensional optical imaging technique (fluorescence molecular tomography, developed at the MGH Center for Molecular Imaging Research) allowed study of monocyte-mediated immune functions at the site of heart muscle injury.

In mice whose spleens were removed and replaced with a donor organ, an induced heart attack led to rapid increase of spleen-derived donor monocytes in the bloodstream and massive accumulation of donor cells at the site of injury. In animals from whom spleens were removed but not replaced, heart attack produced no significant monocyte increase in the bloodstream or in the heart. "With all these approaches together, we found that the monocytes that travel to the heart after a heart attack come directly from the spleen and that, without the splenic monocytes, the heart tissue does not heal well," says Filip Swirski, PhD, co-lead author of the Science report.

The investigators also found that the hormone angiotensin II, known to be released in response to a heart attack, is actively involved in the release of monocytes from the spleen. Identifying that pathway could lead to ways of manipulating the splenic monocyte reservoir to improve healing after a heart attack and potentially regulate other inflammatory situations. "We need to know whether this monocyte reservoir is important in other diseases – such as viral or bacterial infection, cancer or atherosclerosis – and understand how to precisely control storage and release of monocytes in a therapeutic setting, both of which we are currently investigating," says Mikael Pittet, PhD, senior author of the Science report.

Pittet and Nahrendorf are both assistant professors of Radiology at Harvard Medical School, and Swirski is an instructor in Radiology. Additional co-authors of the Science report are Martin Etzrodt, Moritz Wildgruber, Virna Cortez-Retamozo, Peter Panizzi, PhD, Jose-Luiz Figueiredo, MD, Rainer Kohler, PhD, Aleksey Chudnovskiy, Peter Waterman, Elena Aikawa, MD, PhD, Thorsten Mempel, MD, PhD, and Ralph Weissleder, MD, PhD, MGH Center for Systems Biology; and Peter Libby, MD, Brigham and Women's Hospital. The study was supported by grants from the National Institutes of Health and the MGH Center for Systems Biology.

Massachusetts General Hospital, established in 1811, is the original and largest teaching hospital of Harvard Medical School. The MGH conducts the largest hospital-based research program in the United States, with an annual research budget of more than $500 million and major research centers in AIDS, cardiovascular research, cancer, computational and integrative biology, cutaneous biology, human genetics, medical imaging, neurodegenerative disorders, regenerative medicine, systems biology, transplantation biology and photomedicine.

Sue McGreevey | EurekAlert!
Further information:
http://www.mgh.harvard.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>