Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected new mechanism behind rheumatoid arthritis

08.02.2011
A team of researchers at the University of Gothenburg, Sweden, has identified an enzyme that protects against inflammation and joint destruction. Made when the researchers blocked production of the enzyme GGTase-I in transgenic mice, this unexpected discovery could lead to the identification of new mechanisms that control the development of inflammatory disorders, as well as new medicines.

The article has been published in the Journal of Clinical Investigation (JCI). GGTase-I is found in all cells but is particularly important for the function of so-called CAAX proteins in inflammatory cells. GGTase-I attaches a cholesterol-like fatty acid on the CAAX proteins.

Researchers previously believed that this fatty acid played an important role in activating the proteins and could contribute to the functioning of inflammatory cells. There are now medicines that include substances that suppress the activity of GGTase-I with the aim of stopping the CAAX proteins from working. These substances are already being clinically tested on cancer patients, and researchers have also wondered whether they could be used to alleviate inflammatory disorders such as rheumatoid arthritis.

However, treatment with substances that inhibit GGTase-I has often been non-specific, making it difficult for researchers to assess the real potential of GGTase-I as a drug target.

“We therefore developed genetic strategies in transgenic mice to switch off the gene that codes for GGTase-I,” says PhD student Omar Khan who is heading up the study along with professor Martin Bergö and co-worker docent/consultant Maria Bokarewa from the Institute of Medicine. “This allowed us to investigate whether a complete blockade of GGTase-I can inhibit the development of inflammatory disorders and whether there are any side-effects.”

However, the results were quite the opposite of what the researchers were expecting. Instead of inhibiting inflammation, the deficiency of GGTase-I in macrophages (a common type of inflammatory cell) led to the mice developing chronic inflammation with cartilage and bone erosion in the joints, very similar to rheumatoid arthritis in humans.

“We had to reassess the role that GGTase-I plays in the function of CAAX proteins, and found that one group of CAAX proteins could not only function quite normally in macrophages that didn’t have any GGTase-I, but even increased in number and activity. This led to hyper-activation of the macrophages, which produced large quantities of inflammatory substances and, in turn, led to arthritis in the mice.”

GGTase-I acts on over 50 different CAAX proteins. The study shows that just one of these proteins – RAC1 – appears to be behind the disorder. This means that one function of GGTase-I is to suppress the activity of RAC1 and protect mice from developing arthritis. The results suggest that medicines that inhibit GGTase-I might actually induce arthritis instead of providing a cure. This will be important information for the ongoing clinical trials with GGTase-I inhibitors in cancer patients.

“The study has also resulted in an effective and simple genetic mouse model for arthritis that can be used to study the effect of new medicines and identify the mechanisms involved in the development of the disorder,” says Khan. “The next step is to try to decide whether and how GGTase-I and RAC1 are implicated in arthritis in humans.”

CAAX PROTEINS
CAAX proteins are a collection of proteins in the cells that have the amino acid sequence C-A-A-X at one end. This sequence is a signal for the protein to attract a number of enzymes, including GGTase-I, which switches on a cholesterol-like fatty acid on the CAAX proteins. This enables the protein to bind to membranes in the cells, for example the inside of the membrane that surrounds the cell. CAAX proteins include RAS (a well-known cancer protein) and the RAC and RHO proteins, which are important for many different cell functions.
For more information, please contact:
Professor Martin Bergö, Institute of Medicine, Sahlgrenska Academy, tel: +46 (0)31 342 7858, mobile: +46 (0)73 312 2224, e-mail: martin.bergo@wlab.gu.se
PhD student Omar Khan, Institute of Medicine, Sahlgrenska Academy, +46(0)31 342 4723, e-mail: omar.khan@wlab.gu.se

Docent/consultant Maria Bokarewa, Institute of Medicine, Sahlgrenska Academy, tel: +46 (0)31 342 4021, mobile: +46 (0)70 651 3292, e-mail: maria.bokarewa@rheuma.gu.se

Bibliographic data
Journal: Journal of Clinical Investigation (JCI).
Title of article: Geranylgeranyltransferase type I (GGTase-I) deficiency hyperactivates macrophages and induces erosive arthritis in mice

Authors: Omar M. Khan, Mohamed X. Ibrahim, Ing-Marie Jonsson, Christin Karlsson, Meng Liu, Anna-Karin M. Sjogren, Mikael Brisslert, Sofia Andersson, Claes Ohlsson, Lillemor Mattsson Hultén, Maria Bokarewa and Martin O. Bergo

Helena Aaberg | idw
Further information:
http://www.gu.se
http://www.sahlgrenska.gu.se/digitalAssets/1327/1327114_khan_et_al_jci43758.pdf

Further reports about: CAAX GGTase-I Medicine Rac1 fatty acid inflammatory cells proteins rheumatoid arthritis

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>