Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New understanding of tiny RNA molecules could have far-ranging medical applications

01.07.2013
A team led by scientists at The Scripps Research Institute (TSRI) has identified a family of tiny RNA molecules that work as powerful regulators of the immune response in mammals. Mice who lack these RNA molecules lose their normal infection-fighting ability, whereas mice that overproduce them develop a fatal autoimmune syndrome.

"This finding gives us insights into immune regulation that could be very helpful in a range of medical applications, from viral vaccines to treatments for autoimmune diseases," said Changchun Xiao, assistant professor in TSRI's Department of Immunology and Microbial Science and senior investigator for the study, which appears in the June 30, 2013 issue of Nature Immunology.

Unraveling a Crucial Process

The finding concerns a key interaction between T cells and B cells, the allied lymphocyte armies that make up most of the adaptive immune system of mammals. B cells, which produce antibodies, usually lie in wait for pathogens in special zones called follicles within lymph nodes and the spleen. But to start proliferating normally and pumping out antibodies to fight an infection, these B cells have to be assisted, in effect, by T cells known as "follicular helper" T cells (TFH cells). "The TFH cells have to migrate into the B cell follicles and physically contact the B cells in order to provide help to them," said Xiao. "However, the molecular pathways that control TFH cell differentiation and migration have not been well understood."

In 2009, other researchers proposed that this crucial process requires the suppression of the miR-17~92 family of RNA molecules. These are among the thousands of short RNA molecules (often known as micro-RNAs, miRs, or miRNAs) that are made by mammalian cells and are meant to do their jobs while in RNA form. Typically an miRNA works inside the cell as a basic regulator or "dimmer switch" for the activity of tens to hundreds of genes—it binds to transcripts of those genes and slows down their translation into proteins.

Xiao, who had been studying the miR-17~92 family since 2005, decided to examine their role in TFH differentiation. His team began by measuring the levels of these miRNAs in young, "naïve" T cells and in the TFH cells to which these T cells gave birth after exposure to foreign antigens.

Surprising Finding

To the researchers' surprise, the miR-17~92s showed the opposite pattern of expression than expected: their levels jumped as the naïve T cells began differentiating into TFH cells, but fell back by the time the process was finished. The finding suggested that, far from acting as a brake on TFH differentiation, miR-17~92s work as enablers of the process.

To confirm their suspicion, team members developed mutant mouse lines in which some or all of the miR-17~92 miRNAs were knocked out of T cells. These miR-17~92-deficient T cells turned out to be much less able to differentiate into TFH cells. As a result, the follicle-dwelling B cells that depend on TFH assistance also lost much of their ability to respond to an immune challenge. "These mutant mice showed a deficient antibody response to a standard immune-provoking protein," said Seung Goo Kang, a postdoctoral research associate in the Xiao laboratory who was the leading author of the study.

Collaborating TSRI scientists led by John Teijaro, a senior research associate in the laboratory of Michael B. A. Oldstone, professor in the Department of Immunology and Microbial Science, showed further that these transgenic mice—unlike ordinary lab mice—could not clear a chronic virus infection that is used as a standard challenge in immunological experiments.

By contrast, when the team raised transgenic mice whose T cells produced four to six times the normal amount of miR-17~92s, these T cells differentiated into TFH cells spontaneously—that is, without an immune-stimulating inoculation.

These mice developed antibody responses to their own tissues, and died young, with swollen spleen and lymph nodes. "The accumulation of autoantibodies is also seen in lupus and other autoimmune diseases in humans," said Wen-Hsien Liu, another postdoctoral research associate in the Xiao laboratory and a co-first author of the paper.

Important Targets

Liu and Kang were able to track down a key target gene of miR-17~92s, which the miRNAs suppress to enable TFH cell differentiation. The targeted gene codes for Phlpp2, a recently discovered signaling inhibitor. "Lowering Phlpp2 protein levels in our miR-17~92-knockout T cells restored much of their ability to become TFH cells," Kang said.

"Phlpp2 is one important target, but we believe there are others too, and we are now looking for those," Xiao said. He and his colleagues also plan to investigate methods for manipulating miR-17~92s and their TFH cell-related pathways, in order to boost antibody responses – to vaccines for example—or alternatively to lower autoantibody productions in people with autoimmune diseases.

The study, "miR-17~92 family microRNAs are critical regulators of T follicular helper cell differentiation," was a collaboration that also involved the laboratory of Hai Qi at Tsinghua University in Beijing and the laboratory of Eric Verdin at the Gladstone Institute of Virology and Immunology at the University of California, San Francisco. A co-first author of the study was Peiwen Lu of the Qi laboratory; other co-authors were Hyung W. Lim of the Verdin laboratory, Daniel Fremgen of the Oldstone laboratory and Hyun Yong Jin and Jovan Shepherd of the Xiao laboratory.

The study was funded by the PEW Charitable Trusts, the Cancer Research Institute, the Lupus Research Institute, the American Heart Association (grant 11POST7430106 ), the National Institutes of Health (R01AI019484 and R01AI087634) and the National Natural Science Foundation of China (81161120405).

Mika Ono | EurekAlert!
Further information:
http://www.scripps.edu

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New proton record: Researchers measure magnetic moment with greatest possible precision

High-precision measurement of the g-factor eleven times more precise than before / Results indicate a strong similarity between protons and antiprotons

The magnetic moment of an individual proton is inconceivably small, but can still be quantified. The basis for undertaking this measurement was laid over ten...

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Lightning, with a chance of antimatter

24.11.2017 | Earth Sciences

A huge hydrogen generator at the Earth's core-mantle boundary

24.11.2017 | Earth Sciences

Scientists find why CP El Niño is harder to predict than EP El Niño

24.11.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>