Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Components of Memory

06.10.2014

Freiburg neurobiologists elucidate the spatial and temporal dynamics of specific glutamate receptors in the brain

Dr. Uwe Schulte, Dr. Jochen Schwenk, Prof. Dr. Bernd Fakler, and their team have elucidated the enormous spatial and temporal dynamics in protein composition of the AMPA-type glutamate receptors, the most important excitatory neurotransmitter receptors in the brain. These receptors are located in the synapses, the contact points between two nerve cells, where they are responsible for the rapid signal transduction and information processing. The results illustrate that the receptors are far more diverse than previously anticipated and pave the way for research into their functions in the various regions of the brain. The biologists published their findings in the journal Neuron.


The structure determines the function: AMPA receptors in the nerve cells of the brain are composed of a range of more than 30 different proteins. Source: Bernd Fakler

The researchers have thus opened up the possibility to investigate the properties and functions of the AMPA receptors in the various regions of the brain at the level of their protein components.

This is of particular significance as the AMPA receptors and their dynamics are regarded as central elements for memory formation. The researchers succeeded in elucidating the subunit structure of the AMPA receptors in various regions of the brain and even in different groups of distinct nerve cells.

It became clear that the receptors exhibit an enormous range of variation in structure and molecular architecture and can evidently be precisely adapted to the function of the nerve cells and brain region in which they are located. In addition, the researchers demonstrated that this diversity in protein composition of the receptors is also exploited during the development of the brain.

In 2012, Fakler’s research team already used novel proteomic technologies to show that AMPA receptors in the brain are assembled from a pool of more than 30 different proteins - whose primary function(s) is are most parts as yet unknown.

In fact in another recent study, also published in Neuron, the researchers demonstrated just how significant these unknown components are or can be: They showed that the cornichon protein dictates the time course of the AMPA receptor-mediated synaptic transmission and thus accounts for the difference between various types of nerve cells in the brain.

Uwe Schulte, Jochen Schwenk, and Bernd Fakler conduct their research at the Institute of Physiology and at the Cluster of Excellence BIOSS Centre for Biological Signalling Studies of the University of Freiburg.

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg
Further information:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-10-06.101-en

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>