Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Components of Memory

06.10.2014

Freiburg neurobiologists elucidate the spatial and temporal dynamics of specific glutamate receptors in the brain

Dr. Uwe Schulte, Dr. Jochen Schwenk, Prof. Dr. Bernd Fakler, and their team have elucidated the enormous spatial and temporal dynamics in protein composition of the AMPA-type glutamate receptors, the most important excitatory neurotransmitter receptors in the brain. These receptors are located in the synapses, the contact points between two nerve cells, where they are responsible for the rapid signal transduction and information processing. The results illustrate that the receptors are far more diverse than previously anticipated and pave the way for research into their functions in the various regions of the brain. The biologists published their findings in the journal Neuron.


The structure determines the function: AMPA receptors in the nerve cells of the brain are composed of a range of more than 30 different proteins. Source: Bernd Fakler

The researchers have thus opened up the possibility to investigate the properties and functions of the AMPA receptors in the various regions of the brain at the level of their protein components.

This is of particular significance as the AMPA receptors and their dynamics are regarded as central elements for memory formation. The researchers succeeded in elucidating the subunit structure of the AMPA receptors in various regions of the brain and even in different groups of distinct nerve cells.

It became clear that the receptors exhibit an enormous range of variation in structure and molecular architecture and can evidently be precisely adapted to the function of the nerve cells and brain region in which they are located. In addition, the researchers demonstrated that this diversity in protein composition of the receptors is also exploited during the development of the brain.

In 2012, Fakler’s research team already used novel proteomic technologies to show that AMPA receptors in the brain are assembled from a pool of more than 30 different proteins - whose primary function(s) is are most parts as yet unknown.

In fact in another recent study, also published in Neuron, the researchers demonstrated just how significant these unknown components are or can be: They showed that the cornichon protein dictates the time course of the AMPA receptor-mediated synaptic transmission and thus accounts for the difference between various types of nerve cells in the brain.

Uwe Schulte, Jochen Schwenk, and Bernd Fakler conduct their research at the Institute of Physiology and at the Cluster of Excellence BIOSS Centre for Biological Signalling Studies of the University of Freiburg.

Rudolf-Werner Dreier | Albert-Ludwigs-Universität Freiburg
Further information:
http://www.pr.uni-freiburg.de/pm/2014/pm.2014-10-06.101-en

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>