Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Uncovering the secrets of ulcer-causing bacteria

17.08.2009
Clever biochemical strategy enables bacteria to move freely and colonize host

A team of researchers from Boston University, Harvard Medical School and Massachusetts Institute of Technology recently made a discovery that changes a long held paradigm about how bacteria move through soft gels.

They showed that the bacterium that causes human stomach ulcers uses a clever biochemical strategy to alter the physical properties of its environment, allowing it to move and survive and further colonize its host.

The Proceedings of the National Academy of Sciences reports the findings in its most recent issue. Helicobacter pylori is a bacterium that inhabits various areas of the stomach where it causes chronic, low-level inflammation and is linked to gastric ulcers and stomach cancer. In order to colonize the stomach, H. pylori must cope with highly acidic conditions in which other bacteria are unable to survive. It is well known however, that the bacterium accomplishes this by producing ammonia to neutralize the acid in its surroundings. In addition, newly published research shows it does something else; it changes its environment to enable freer movement.

Acidic conditions within the stomach also work against the bacteria's ability to move freely. This is due to a protein called "mucin," a crucial component of the protective mucus layer in the stomach. In the presence of acid mucin forms a protective gel, which acts as a physical barrier that stops harmful bacteria from reaching the cell wall.

But, H. pylori increases the pH of its surroundings and changes this "mucin" gel to a liquid, allowing the bacterium to swim across the mucus barrier, establish colonies, attack surface cells and form ulcers.

"Bacteria 'swim' through watery fluids using their tails to propel them," said Boston University physicist Rama Bansil, who is currently on leave from BU, working as a Division of Materials Research program manager at the National Science Foundation. "But it was not obvious how they move through a soft gel like mucus."

To answer the question Bansil, Shyam Erramilli and Jonathan Celli, also of Boston University, partnered with gastroenterologists Nezam Afdhal and Ciaran Kelly, and biochemists Sarah Keates, Bradley Turner and Ionita Ghiran at Harvard Medical School and mechanical and biomedical engineers Gareth McKinley, Peter So and Randy Ewoldt at MIT. The work began a few years ago as a feasibility study and was a part of Celli' Ph. D research.

Using video microscopes, the researchers found that when mucins extracted from mucus were in a liquid state, the bacteria could swim freely, but when mucins were in a gel state, the bacteria were stuck, even though their tails were rotating. More advanced imaging techniques revealed that pH changes directly correlated with the ability of the bacteria to move--the higher the pH, the greater the movement.

"This study indicates that the H. pylori, which is shaped very much like a screw, does not bore its way through the mucus gel like a screw through a cork as has previously been suggested," said Bansil. "Instead it achieves motility by using a clever biochemical strategy."

Researchers hope that the work will pave the way for future studies in native mucus and live animals to devise strategies for preventing H. pylori infection. Such studies could be important to the design of new therapeutic approaches that prevent the bacteria from colonizing in the first place, and also may be relevant to the broader question of bacterial infections in mucus linings in other organs.

View videos showing how the bacterium that causes stomach ulcers alters its physical environment allowing it to colonize and attack cells here:

http://www.acpt.nsf.gov/news/news_videos.jsp?cntn_id=115409&media_id=65494&org=NSF

http://www.acpt.nsf.gov/news/news_videos.jsp?cntn_id=115409&media_id=65493&org=NSF

Bobbie Mixon | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>