Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UNC study identifies genetic cause of most common form of breast cancer

13.05.2009
The discovery of tumor-suppressor genes has been key to unlocking the molecular and cellular mechanisms leading to uncontrolled cell proliferation – the hallmark of cancer. Often, these genes will work in concert with others in a complex biochemical system that keeps our cells growing and dividing, disease free.

Now researchers at the University of North Carolina at Chapel Hill School of Medicine and UNC Lineberger Comprehensive Cancer Center have found that defects in one gene, called p18, may override the rest, eventually leading to cancer.

This discovery, combined with new laboratory techniques, will help scientists identify and test new treatments for luminal-type tumors, which account for between 70 and 80 percent of all breast cancers, but are generally slower growing than other types.

The results of the research appear in the May 2009 issue of Cancer Cell.

Defects in the p18 gene have been observed in different types of human cancer. Senior study author Yue Xiong, Ph.D., William R. Kenan Jr. Distinguished Professor of biochemistry and biophysics, observes, "When this gene is not expressed or is deleted, cells have no braking mechanism. They will continue to grow and divide until they turn into cancer."

Xiong and his colleagues specifically targeted the role that p18 plays in the development of luminal breast cancers. Using genetically-engineered mice with deletion of p18 genes, they created a highly reliable model of human breast cancers. The researchers tested their model by analyzing the gene in samples from approximately 300 human breast cancer patients, proving that the decreased expression of the p18 gene is highly correlated with the development of luminal tumors.

"The mechanism behind these tumors is quite different from that of other forms of breast cancer. Understanding this mechanism and having a good mouse model allows us to specifically test how treatments work against these tumors, which may then benefit human patients," said Xiong.

The research was supported by the National Cancer Institute Breast SPORE program, the National Institutes of Health and the Breast Cancer Research Foundation.

Study co-authors from the UNC Lineberger Comprehensive Cancer Center include Xin-Hai Pei, Ph.D., research assistant professor; Feng Bai, M.D., Ph.D., research associate; Matthew D. Smith, research specialist; Jerry Usary, research associate; Cheng Fan, research associate; and Charles M. Perou, Ph.D., associate professor of genetics and pathology and laboratory medicine.

School of Medicine contact: Les Lang, (919) 966-9366, llang@med.unc.edu

Lineberger center contact: Dianne Shaw, (919) 966-7834, dgs@med.unc.edu

Les Lang | EurekAlert!
Further information:
http://www.unc.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

50th Anniversary at JULABO GmbH

23.10.2017 | Press release

Taming 'wild' electrons in graphene

23.10.2017 | Physics and Astronomy

Mountain glaciers shrinking across the West

23.10.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>