Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New UGA research on gene sheds light on T-cell production

10.11.2008
New study shows that important gene controls the ability of the thymus to produce disease-fighting T-cells after an organism’s birth

New research, just published by researchers from the University of Georgia, provides the first evidence that a key gene may be crucial to maintaining the production of the thymus and its disease-fighting T-cells after an animal’s birth.

The discovery could help scientists find out how to turn the thymus back on so it could produce T-cells long after it normally shuts down most of its function, which, for humans, occurs by early adulthood. If the finding leads to further ways to manipulate the gene, the result could be a new avenue for the body to fight disease more effectively as the body ages.

The research was just published in the online edition of the journal Blood, a publication of the American Society of Hematology.

“Such things as infectious diseases, inflammation and heart problems are all related to immune response,” said Nancy Manley, an associate professor of genetics and chair of UGA’s Interdepartmental Developmental Biology Group. “You don’t have to think far to see how understanding the effect of this gene could affect the quality of life for older people and others as well.”

Other authors of the paper, beside Manley, are doctoral graduate student Lizhen Chen and assistant research scientist Shiyun Xiao, also of the University of Georgia.

The thymus is an organ located in the upper part of the human chest cavity, behind the sternum. This organ is the location where important systemic infection fighters called T-cells develop. Over the past two decades, T-cell counts have become part of everyday dialogue due to their importance in monitoring HIV/AIDS and other disorders.

The thymus slowly begins to shut down early in life and becomes largely inactive by early adulthood. Still, that’s fine for most people, since an entire lifetime supply of T-cells is produced in that time. But, for some people, the loss of irreplaceable T-cells through disease can lead to chronic illnesses and a shortened life.

Until recently, scientists had thought that the thymus in adults was permanently shut down because no known regulatory mechanism existed that might allow doctors to “turn back on” the thymus if a person’s T-cells were compromised. There are now some treatments currently in trials that can transiently rejuvenate the thymus and increase thymic output in humans.

The problem has been, though, that the mechanisms by which all this works are poorly understood, and all current treatments have systemic effects that can cause unacceptable side effects in all but the most seriously ill, who are more willing to tolerate them in exchange for possible benefit.

Now, however, Manley and her colleagues have shown for the first time that a gene called Foxn1 is required to maintain the postnatal thymus. Their results also suggest that changes in Foxn1 expression in important thymic epithelial cells (TECs) during aging contribute to the slow shut-down of the thymus with age.

“While this research was done in mice, it’s not far-fetched to say that this points toward possible therapies for a huge variety of illnesses, from AIDS to age-related immunodeficiency disorders,” said Manley.

One clear advantage of understanding how Foxn1 works in maintaining the thymus and T-cell production is that it could lead to narrowly targeted therapies that are less likely to cause collateral side effects in a patient.

Manley got into studying the Foxn1 gene through her work as a developmental biologist, but the discovery of how the gene works in maintaining the postnatal thymus came as a surprise. The mouse carrying the genetically altered Foxn1 gene was produced by happenstance rather than by design. It turns out that the engineered gene has normal fetal expression and thymus development, but after birth, the gene’s expression decays much more rapidly than in normal mice, giving the scientists a way to rapidly assess just what the gene does in the growing animal.

“In effect, what happens in this model is that the gene ‘ages’ more rapidly than the mouse does,” said Manley. “This has given us a tremendous ability to understand to a more accurate degree just what the gene is doing.”

The irony that the new discovery may find its best uses in dealing with issues of aging and that Manley is a development biologist hasn’t been lost on her.

“The truth is that aging and development aren’t really different things,” she said. “They’re part of a continuum. The young thymus is like a turned-on spigot pumping out a diversity of T-cell types, and T-cells live a long time. Even after the spigot turns off, we don’t really see any major changes in them for most people until they reach about 60 years of age. Then the rates of things like rheumatoid arthritis and cancer go up substantially. And, as we all know, older people get sick more often.”

If, however, physicians were able selectively to turn T-cell production back on, then many diseases that currently afflict older people could become manageable if not, in cases, entirely absent. So if “60 is the new 40,” as some people now say, that could theoretically change to “75 is the new 40.” And that first number of the pair could be even higher.

“Would turning Foxn1 back on allow us to regenerate an aged thymus?” Manley asks. “We just don’t know yet. But we are getting evidence now to say that it would allow it, and we will be working on that to see how it can happen. If we could delay when the thymus shuts off or have it work at a low level our entire lives, it has the potential to make a huge difference in so many health-related issues.”

While the mouse model doesn’t precisely mimic human response, it is close enough so that biologists and geneticists can often draw conclusions from mouse trials on how humans will respond.

Though the ability of science to manipulate this gene and potentially the production of T-cells isn’t going to happen next week, it may not be that far down the road, either. Under best circumstances, the researchers should know within five to 10 years whether the therapeutic ability to turn back on the production of T-cells is possible.

Philip Lee Williams | University of Georgia
Further information:
http://www.uga.edu

Further reports about: Disease Foxn1 HIV/AIDS Infectious Diseases Manley T-cell Thymus UGA ability body ages heart problems inflammation

More articles from Life Sciences:

nachricht The world's tiniest first responders
21.06.2018 | University of Southern California

nachricht A new toxin in Cholera bacteria discovered by scientists in Umeå
21.06.2018 | Schwedischer Forschungsrat - The Swedish Research Council

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Temperature-controlled fiber-optic light source with liquid core

In a recent publication in the renowned journal Optica, scientists of Leibniz-Institute of Photonic Technology (Leibniz IPHT) in Jena showed that they can accurately control the optical properties of liquid-core fiber lasers and therefore their spectral band width by temperature and pressure tuning.

Already last year, the researchers provided experimental proof of a new dynamic of hybrid solitons– temporally and spectrally stationary light waves resulting...

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Better model of water under extreme conditions could aid understanding of Earth's mantle

21.06.2018 | Earth Sciences

What are the effects of coral reef marine protected areas?

21.06.2018 | Life Sciences

The Janus head of the South Asian monsoon

21.06.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>